Режим чтения
Скачать книгу

После человека. Зоология будущего читать онлайн - Дугал Диксон

После человека. Зоология будущего

Дугал Диксон

«Едва увидев эту книгу, я пожалел, что не написал ее сам…

Это изумительная, красиво поданная идея. Ее автор поставил перед собой интригующую задачу: рассмотреть эволюцию на нашей собственной планете в будущем, основываясь на тех видах, которые существуют сегодня. Книгу не только интересно читать – она обладает реальной научной ценностью. Животные на ее страницах могут быть воображаемыми, но они наглядно иллюстрируют целый спектр важных биологических принципов. Именно это – то, каким образом Дугал Диксон превосходно уравновесил свое яркое воображение и строгую научную дисциплину – как раз и делает его книгу такой интересной, а его животных – столь убедительными».

Десмонд Моррис

Дугал Диксон

После человека. Зоология будущего

Dougal Dixon

AFTER MAN. A ZOOLOGY OF THE FUTURE

Introduction by Desmond Morris

© Dougal Dixon 1981, 2016

© Моррис Д., предисловие, 1981

© Волков П., перевод на русский язык, 2016

© Издание на русском языке, оформление.

ООО «Издательская Группа «Азбука-Аттикус», 2017

КоЛибри®

* * *

Гэвину

Автор и издатель выражают благодарность иллюстраторам книги.

Это Диц Уоллис, Джон Батлер, Брайан МакИнтайр, Филип Худ, Рой Вудард и Гэри Марш.

Все иллюстрации основаны на исходных эскизах и разработках автора.

Также автор благодарит Малькольма Харта за помощь при прогнозировании форм птиц, которые будут существовать на Земле через 50 млн лет, и Джона Отса за его советы и критику во время работы над книгой.

Предисловие Десмонда Морриса

Едва увидев эту книгу, я пожалел, что не написал ее сам…

Это изумительная, красиво поданная идея. Много лет назад, будучи молодым зоологом, я придумывал несуществующих животных – рисовал их карандашом и красками. Это создавало приятный контраст требованиям моих научных исследований. Свободный от ограничений эволюции в том виде, в каком они существуют, я был волен следовать своим собственным, личным эволюционным капризам. Я мог придумывать чудовищ и странных существ, растущих словно растения, и невероятных животных любых цветов, форм и размеров, какие мне нравились, позволял им изменяться и развиваться согласно придуманным мною правилам, давая полный простор собственному воображению. Я называл их своими биоморфами, и они стали для меня такими же реальными, как животные и растения в настоящем мире.

Мышление Дугала Диксона, очевидно, работало сходным образом, хотя существа, которых он вызвал к жизни, сильно отличаются от моих. Вместо того чтобы изобретать параллельную эволюцию, как бы происходящую в ином мире, он поставил перед собой интригующую задачу: рассмотреть эволюцию на нашей собственной планете в будущем, основываясь на тех видах, которые существуют сегодня. Взмахивая волшебной палочкой времени и устраняя сегодняшние доминирующие виды, Дугал Диксон мысленно наблюдает, как небольшие животные постепенно занимают место главных обитателей поверхности Земли.

Распространив свой сценарий на отдаленное будущее, приблизительно через 50 млн лет после нашей эпохи, он дал членам своего нового животного царства время, чтобы претерпеть драматические изменения в строении и поведении. Но, делая это, Диксон никогда не позволял себе становиться слишком экстравагантным. Он создавал свою фауну будущего настолько тщательно, что каждый из видов животных преподает нам важный урок, повествующий об известных процессах эволюции в прошлом – адаптации и специализации, конвергенции и адаптивной радиации. Книгу «После человека. Зоология будущего» не только интересно читать – она обладает реальной научной ценностью. Животные на ее страницах могут быть воображаемыми, но они наглядно иллюстрируют целый спектр важных биологических принципов. Именно это – то, каким образом Дугал Диксон превосходно уравновесил свое яркое воображение и строгую научную дисциплину, – как раз и делает его книгу такой интересной, а его животных – столь убедительными, если сравнивать их с монстрами, зачастую откровенно смешными, каких изобретают второсортные представители жанра научной фантастики.

Единственная опасность, которой грозит чтение этой восхитительной книги, состоит в том, что некоторые из вас могут внезапно ощутить печаль от мысли, что животные, скрупулезно описанные в ней, не существуют в наше время. Было бы так здорово, если бы можно было отправиться в экспедицию и понаблюдать за ними всеми, бродящими по поверхности Земли наших дней, при помощи бинокля! Что касается меня лично, я очень остро ощущаю это, когда листаю эту книгу. На свете нет большей похвалы, чем та, которую я могу высказать ее автору.

Предисловие автора

Эволюция – это процесс усовершенствования. Следовательно, смотреть на животных и растения наших дней и на их взаимодействие – на хрупкое равновесие между флорой, травоядными и хищниками, точную конструкцию несущих нагрузку структур в позвоночнике жирафа, изящную форму ступни обезьяны, которая позволяет ей как схватывать предметы, так и лазать по деревьям, изысканную окраску кожи шумящей гадюки, полностью скрывающую ее среди мертвых листьев лесной подстилки, – и пытаться спроецировать все это на будущее – занятие на грани невозможного. А как вы смогли бы улучшить само совершенство?

Эти эскизы выбраны из собственных рабочих набросков автора и были использованы художниками при создании таблиц и иллюстраций для книги «После человека…».

Одна из тенденций, которую тем не менее можно легко заметить, – это разрушительное воздействие, оказываемое человеком на выверенное природное равновесие. Я не напрасно взял его крайнее проявление, когда человек уже уничтожил виды, численность которых в наши дни снижается, и допустил чудовищное разрушение их естественной среды обитания перед тем, как исчез сам, позволив, таким образом, эволюции работать вновь, восполняя нанесенный людьми ущерб и заполняя опустошенные места обитания. Исходным материалом для этого восполнения послужили виды животных, сейчас преуспевающих вопреки или благодаря присутствию человека и переживших его, – те, кого человек расценивает как вредителей и нахлебников. Они выживут с наибольшей вероятностью, нежели сильно видоизмененные и ослабленные близкородственным скрещиванием животные, которых он выводит и искусственно сохраняет ради удовлетворения своих собственных потребностей. Результатом происходящих процессов станет зоология мировой фауны, сложившейся через выбранные мною 50 млн лет в будущем, которую я использовал для объяснения некоторых основных принципов эволюции и экологии. Этот результат – всего лишь предположение, но оно основано на фактах. То, что я предлагаю, не точное предсказание, а скорее прощупывание возможностей.

Мир будущего описан как бы путешественником во времени из наших дней, который очутился на Земле той эпохи и изучал ее фауну. Такому путешественнику будет известно кое-что о жизни современных животных, так что он сможет описывать происходящее со ссылкой на разновидности животных, знакомые читателю. Его отчет написан в настоящем времени, как будто адресован коллегам – путешественникам во времени, которые отправятся в тот же самый период и пожелают сами
Страница 2 из 10

исследовать мир.

Усаживайтесь поудобнее, дорогие путешественники во времени, и наслаждайтесь драматическим зрелищем эволюции жизни на вашей планете.

    Дугал Диксон

Эволюция

Форма и место живых существ на Земле могут быть отнесены на счет двух составляющих – эволюции и среды обитания. Изучение эволюции выясняет, как возникла жизнь, каким образом она становилась разнообразнее и как разные живые существа происходят от иных видов. Изучение среды обитания живого существа (экологии) показывает, как разные формы жизни взаимодействуют друг с другом и со средой, которую они населяют.

Иными словами, эволюцию можно представить себе как продольный срез жизни на нашей планете, тогда как экология показывает эту же ситуацию на поперечном срезе. Оба этих компонента неразрывно связаны друг с другом, и их нельзя изучать раздельно.

Хотя оба этих аспекта способствуют выживанию, не следует забывать, что очень важным фактором является вымирание.

Без него не было бы пространства для эволюции. В природе не появились бы новые экологические ситуации, требующие разрешения путем эволюции новых животных и растений из «старых запасов». То, что эволюция происходит и сейчас, прослеживается как по палеонтологической летописи, так и по свидетельствам, которые содержат ныне живущие растения и животные. Исследование ископаемых остатков показывает общую тенденцию развития от простого к более сложному, а также ту роль, которую играет среда в приспособлении организма к преобладающим условиям. У ныне живущих организмов сопоставимые особенности в строении, эмбриональном развитии и биохимии являются четким указанием сходной эволюционной истории или общего происхождения. Именно поэтому эволюция – это не явление, протекавшее лишь в прошлом с целью приспособить растения и животных к сегодняшней экологии; она представляет собой процесс, идущий постоянно, который мы можем изучать как по его результатам, так и по ископаемым свидетельствам прошлого. Эволюция происходила, происходит сейчас и будет продолжаться настолько долго, насколько долго жизнь будет существовать на нашей планете.

Генетика клетки

Животные, а также, разумеется, растения сложены из микроскопических кирпичиков, называемых клетками. Клетки, находящиеся в разных органах и тканях одного и того же существа, обладают отнюдь не одинаковыми размерами и формой – кости «сконструированы» из угловатых клеток, почки – из округлых, нервы – из длинных и тонких, но все они состоят из схожих компонентов. Снаружи каждую клетку окружает клеточная оболочка – мембрана, заключающая в себе студенистую цитоплазму, которая содержит множество маленьких структурных образований, называемых органеллами. Важнейшее из них – клеточное ядро, находящееся в центре клетки и несущее в себе информацию, на основе которой строится весь организм.

Информация хранится в виде кода, представляющего собой последовательность компонентов, содержащихся в длинной молекуле сложного соединения, известного как дезоксирибонуклеиновая кислота (ДНК). Молекула ДНК немного похожа на лестницу, скрученную вдоль. Пролеты «лестницы» состоят из сахарофосфатных соединений, а каждая ступенька – из пары соединений, называемых азотистыми основаниями. Существует только четыре таких основания, и последовательность, в которой они располагаются вдоль скрученной «лестницы», дает кодированные инструкции – в соответствии с ними и формируется организм. Хотя код полностью повторяется в ядре любой клетки организма, для формирования каждого отдельного органа используются лишь немногие его участки.

Большинство клеток животных содержит одни и те же основные компоненты.

В центре находится ядро (1), в котором заключен генетический материал клетки. Митохондрии (2), отвечающие за выработку энергии, и лизосомы (3), секретирующие химические соединения, лежат ближе к поверхности цитоплазмы (4). Рибосомы (5), где происходит биосинтез белков, располагаются вдоль складчатых производных клеточной мембраны, известных как эндоплазматическая сеть (6).

Замечательным свойством молекулы ДНК является ее способность к самовоспроизведению. Молекула расщепляется вдоль и раскручивается таким образом, что каждая половина «лестницы» состоит из «перил» и половинок «ступенек». Недостающие половинки достраиваются из запаса сахарофосфатных основ, который пополняется за счет пищи живого существа и находится в ядре любой клетки. Каждый из четырех типов азотистых оснований в цепочке притягивает к себе строго специфичный тип «собрата», поэтому, когда две новые цепочки ДНК полностью сформируются, они будут абсолютно одинаковыми по последовательности компонентов. Это важнейший процесс, который лежит в основе размножения клеток и роста всех организмов.

Тем не менее, чтобы расти, организму также необходимы белки в форме тех или иных структурных элементов, таких как коллаген в случае соединительной ткани между органами или фермент, который поддерживает специфические биологические процессы. Хотя биосинтез белков происходит вне клеточного ядра, он контролируется ДНК и осуществляется путем, аналогичным ее репликации. Посредником, переносящим инструкции ДНК к центрам биосинтеза белка – рибосомам, является молекула, известная как РНК. Она формируется вдоль частично «расстегнутых» участков ДНК и лишь незначительно отличается от них. Информационная РНК двигается к рибосоме, где к ней присоединяется другая форма – транспортная РНК, которая переносит аминокислоты.

Сперматозоид проникает в яйцеклетку (А) и располагается рядом с ее ядром (Б). Хромосомы сперматозоида и яйцеклетки разделяются на отдельные цепочки, известные как хроматиды. Со-ответствующие друг другу хроматиды двигаются к противоположным полюсам яйцеклетки (В), где их окружает ядерная оболочка (Г). Затем это образование разделяется на две самостоятельные клетки (Д).

ОПЛОДОТВОРЕНИЕ: (1) сперматозоид, (2) яйцеклетка, (3) ядро яйцеклетки, (4) хроматида

Именно из этих аминокислот формируются белки. Молекулы РНК являются единственными переносчиками кода и гарантируют, что аминокислоты соединяются в правильной последовательности, формируя белок. Таким способом ДНК контролирует работу всей клетки и всего организма.

Молекулы ДНК в клеточном ядре собраны в структуры, называемые хромосомами, и определенные группировки последовательностей оснований нуклеиновых кислот на ДНК дают начало тем или иным признакам организма. Эти группировки называются генами. Половина хромосом в клетках живого существа – и, следовательно, половина его генов – получена от его матери и половина от отца. Это отражается в расположении хромосом в процессе деления клетки. Затем хромосомы объединяются в пары, и те из них, что получены от матери, выстраиваются параллельно таким же, но полученным от отца, так, чтобы соответствующие гены находились рядом. Даже притом что каждый ген в паре вносит вклад в определение той или иной особенности, один ген часто маскирует эффект действия другого.

Во время деления, когда образуются две самостоятельные клетки, ДНК (А), содержащаяся внутри делящейся клетки,
Страница 3 из 10

расщепляется надвое и формирует новые молекулы ДНК вдоль своих свободных концов (Б) из азотистых оснований и сахарофосфатов, содержащихся в клеточном ядре. Чтобы создать информационную РНК, цепочки ДНК частично расплетаются (В) и достраиваются очень похожим материалом; сахарофосфатный остов имеет незначительные химические отличия, а одно из азотистых оснований замещено другим (Г). Информационная РНК содержит код, гарантирующий присоединение транспортной РНК к верной последовательности для создания цепочки аминокислот, которая образует нужный белок.

Будучи частью процесса размножения, в половых органах формируются особые клетки, известные как гаметы – это сперматозоиды и яйцеклетки – и содержащие только половину набора хромосом, имеющегося в обычных клетках. Хотя в любой из гамет представлена одна хромосома из каждой пары, ни одна из них не идентична никакой из хромосом, полученных от отца или матери, поскольку содержит смесь генетического материала от обоих родителей. Эта особенность хромосом в гаметах как раз и отвечает за различия между разными индивидуумами одного вида, наблюдаемые в природе. Во время оплодотворения гаметы объединяются с гаметами другой особи, чтобы образовать полноценную клетку с полным набором хромосом, который, в свою очередь, делится и формирует совершенно новый организм с генетическими характеристиками, полученными от обоих родителей.

Таков – в общих чертах – тот замысловатый процесс, который позволяет растениям и животным самовоспроизводиться и передавать свои отличительные особенности от поколения к поколению. В генах, вовлеченных в этот процесс, совершаются небольшие изменения, или мутации, позволяющие происходить эволюции. Последствиями мутации являются изменения признаков взрослого организма, выросшего из клетки, содержащей ген. В большинстве случаев произошедшее изменение губительно и ведет к проигрышу организма в окружающем мире, полном конкуренции. Организм погибает, а вместе с ним гибнет и мутантный ген. Тем не менее иногда такой ген вызывает появление особенности, дающей организму заметное преимущество в борьбе за существование.

Разнообразие генетического материала, которое возможно благодаря половому размножению, образует определенный спектр характеристик, встречающихся у представителей одного вида. Естественный отбор, а он может считаться основной движущей силой эволюции, оказывает воздействие на это разнообразие, благоприятствуя отдельным характеристикам и отметая остальные в соответствии с их пользой для выживания.

Естественный отбор

Естественный отбор, являющийся результатом условий, в которых живет организм, способен оказывать один из трех видов воздействия на популяцию. Он может быть стабилизирующим, движущим или разрывающим (дизруптивным). Стабилизирующее воздействие наблюдается, когда условия среды обитания остаются неизменными в течение долгого времени, поэтому такая среда поддерживает хорошо сбалансированную популяцию животных и растений, в которой эволюционные изменения невыгодны. В силу данных обстоятельств любое изменение, происходящее у растения или животного, выведет его из четко определенной, эффективной и проверенной временем совокупности факторов, обеспечивающих выживание, и поставит в невыгодное положение, которое в итоге приведет к его вымиранию. С другой стороны, его более консервативные сородичи выживут. Животные, длительное время подвергавшиеся действию стабилизирующего отбора, могут выглядеть сравнительно неспециализированными и примитивными по сравнению с теми, у которых была более насыщенная событиями эволюционная история. Зачастую для них характерны пассивные механизмы выживания, такие как тяжелый панцирь или высокая плодовитость, компенсирующая потери от хищников.

Развитие лошади – превосходный пример того, как зоологическое семейство приспосабливается к меняющимся условиям жизни. Самая ранняя форма лошади, которую мы знаем, – это гиракотерий, маленькое существо размером с кролика, щипавшее мягкую листву и бродившее по подлеску тропических лесов, широко распространенных 60 млн лет назад. По мере того как во всем мире менялись климатические условия и повсюду на месте лесных массивов распространялись травянистые равнины, лишь немногие потомки гиракотерия смогли достичь процветания. Это были те потомки, которые изменились и приобрели способность быстро бегать по открытым равнинам, а также поедать новую жесткую пищу, представленную разрастающимися травами. В процессе эволюции возникло множество различных форм, и самыми впечатляющими были те великолепные бегающие животные, которые существуют в нашем мире сегодня.

От исходного вьюрка, прилетевшего на Галапагосские острова из Южной Америки, произошло около 15 разных видов, приспособившихся к своему собственному рациону. Вьюрки в целом распределяются на три группы по типу местообитаний – кактусовые, древесные и наземные – и различаются главным образом по форме клюва. Полагают, что это началось со скудости птичьего населения островов, что позволило вьюркам эволюционировать в формы, подходящие ко всем доступным местообитаниям.

(1) Platyspiza crassirostris

(2) Cactospiza heliobates

(3) Carmarhynchus parvulus

(4) Carmarhynchus pauper

(5) Pinaroloxias inornata

(6) Certhidea olivacea

(7) Geospiza fortis

(8) Geospiza magnirostris

(9) Geospiza fulginosa

(10) Geospiza conirostris

(11) Geospiza scandens

Действие движущего естественного отбора более очевидно при изменении самой среды. В силу этих обстоятельств эволюционные метаморфозы происходят таким образом, что складывается впечатление, будто организм эволюционирует по определенному пути с некой конечной целью. Это крайне ошибочное мнение. Оно возникает из-за того, что в контексте своей среды обитания самый поздний член эволюционного ряда всегда оказывается намного лучше приспособленным, чем более ранние промежуточные стадии, которые – в случаях, когда они известны, – выглядят в сравнении с ним наполовину сформированными и неполноценными, даже притом что были столь же хорошо приспособленными к более ранним промежуточным состояниям самой среды обитания. Примером этого служит эволюция лошади, которая из мелкой листоядной формы, жившей в лесу, развивалась в крупную длинноногую бегающую форму, питающуюся травой, пока места ее обитания менялись от леса к открытой травяной равнине. Небольшие изменения, которые позволяли ей более эффективно взаимодействовать с меняющимся окружением, непрерывно отбирались на протяжении истории этого животного, и таким образом в процессе эволюции появилась лошадь.

Дизруптивный отбор реализуется, когда новая среда обитания предоставляет широкий выбор пищевых ресурсов и мест для жизни. Вид животных, попав в такие условия окружающей среды, может успешно дать начало различным формам, которые обладают специфическими приспособлениями к каждому из этих жизненных пространств, или экологических ниш. При отсутствии животных-конкурентов эти отличающиеся друг от друга формы со временем разовьются в совершенно новые виды. Событие такого рода случается, когда в открытом океане в результате вулканической активности образуется остров либо группа островов. Необитаемый остров
Страница 4 из 10

медленно колонизируется животными, постепенно образующими новые виды, чтобы эффективно использовать всю его территорию. Классический пример роста эволюционного разнообразия наблюдается на Галапагосских островах в Тихом океане. В ранний период их истории эти места заселил мелкий вьюрок, который со временем эволюционировал в древесные насекомоядные формы, потребителей семян с массивными клювами, и в форму, поедающую личинки жуков, обитающих в древесине, вытаскивая их кактусовыми иглами. Множество образующихся в итоге видов указывает на большое количество доступных экологических ниш на островах.

В эпоху человека цепочка подвидов, или клин, существовала вокруг Северного полюса между британской клушей (Larus fuscus graellsii) и серебристой чайкой (Larus argentatus argentatus) – ее концевыми членами. Все соседствующие виды клина могли скрещиваться между собой, за исключением концевых членов, которые к тому времени, когда цепочка замкнулась, стали слишком далекими друг от друга, чтобы успешно скрещиваться.

(1) британская клуша (Larus fuscus graellsii)

(2) клуша (Larus fuscus fuscus)

(3) восточносибирская чайка (Larus argentatus vegae)

(4) американская серебристая чайка (Larus argentatus smithsonianus)

(5) серебристая чайка (Larus argentatus argentatus)

Птицы благодаря своей способности к полету обычно являются первыми позвоночными, достигающими нового острова, и потому далекие острова обычно примечательны обитанием на них интересной авифауны. Типичны тяжелые нелетающие птицы, такие как моа (Dinornis) с Новой Зеландии, додо (Raphus) с Маврикия и «слоновая птица» эпиорнис (Aepyornis) с Мадагаскара, которые эволюционировали в отсутствие наземных хищников. Море, отделяющее изолированную территорию, служило эффективным барьером, предотвращающим скрещивание между далеко улетевшими особями, достигшими острова, и исходной популяцией, оставшейся дома. Подобные барьеры для скрещивания обязательны для эволюции новых видов.

Расы, или подвиды, часто сосуществуют в пределах одного и того же ареала, осваивая немного различающиеся среды обитания или источники пищи, но сохраняя способность к скрещиванию. Они могут даже существовать в виде цепочки подвидов, протягивающейся из одной области в другую, и каждый подвид способен скрещиваться с соседним. Когда виды на концах цепи достаточно сильно отличаются, цепочка называется клином. Иногда клин может образовывать кольцо (например, окружающее горный хребет), где два концевых члена, хотя и соседствующие, и родственные, настолько различаются, что скрещивание между ними невозможно, и являются с формальной точки зрения разными видами. Это ставит проблемы в таксономии, поскольку, если скрещивание возможно повсюду на протяжении кольца, его члены должны быть четко определены как подвиды одного и того же вида.

Если группа оказывается изолированной от исходной популяции, она может развиваться самостоятельно до такого состояния, что позже, когда изолирующий барьер исчезает и две популяции встречаются снова, скрещивание между ними уже невозможно. Теперь они по определению представляют собой два различных вида. Различия еще более усиливаются, когда новое место обитания, которое нашла для себя изолированная группа, является по большей части неблагоприятным для жизни. Группа быстро исчезнет, за исключением, может быть, нескольких особей, обладающих крайней степенью выраженности видовых признаков, которые демонстрируют некоторую приспособленность к новому месту обитания. Вид, развивающийся в дальнейшем, будет происходить от этих нескольких особей, которые изначально были генетически отличающимися от основной популяции и случайно оказались носителями генетических задатков, делающих их от рождения более перспективными для выживания.

Поскольку живые организмы способны к неограниченной изменчивости и имеют наследственную склонность изменяться, поселяясь в нестабильной среде, новые виды возникают гораздо быстрее, если окружающая среда быстро меняется. Эволюция настолько результативна, что ни одна экологическая ниша не остается пустой надолго. Кто-нибудь всегда развивается, чтобы ее заполнить.

Поведение животных

Эволюция не касается осознанных желаний организма. Она протекает посредством или какой-то адаптации, вызванной воздействием на него среды обитания, или некой жизненной стратегии, выработанной организмом в течение жизни и переданной им потомству. Это происходит просто потому, что те или иные особенности генетической структуры живого организма отбираются ради соответствия либо противодействия некоторым особенностям среды, в которой он обитает. В этом контексте среда понимается как физическое окружение организма, такое как топография, температура или количество осадков, а также другие организмы, сосуществующие с данным.

Токовые игры птиц – важная часть поведения, которое также включает песню. Визуальные демонстрации могут исполняться независимо от намерения привлечь брачного партнера. Особь, обычно самец, принимает определенные позы и подает сигналы, как только заметит внимание возможной партнерши. Затем пара токует совместно; каждый из партнеров отвечает на жесты другого с целью выяснить его желание или готовность образовать пару. У многих видов при токовании задействовано брачное оперение. Часто самцы нарочито ярко окрашены, тогда как самки по срав-нению с ними выглядят скромно. Движения и жесты в брачном поведении обычно связаны с агрессией или умиротворением. У некоторых видов частью токования является чистка оперения или имитация сна.

(A) олуша (Morus bassanus)

(Б) полынный тетерев (Centrocercus urophasianus)

(В) баклан (Phalacrocorax carbo)

(Г) бролга, австралийский журавль (Grus rubicunda)

(Д) чомга (Podiceps cristatus)

(Е) пингвин Адели (Pygoscelis adeliae)

Скорость эволюции имеет мало общего с темпом возникновения генетических мутаций. Более важным фактором является скорость изменения окружающей среды, скорость, открывающая новые пути, по которым могут эволюционировать и развиваться новые формы жизни. Между 1977 и 2005 годами было замечено, что у вьюрков на крохотном островке Большая Дафне из группы Галапагосских островов форма клюва изменялась в ответ на изменение климатических условий и появление конкурентов, причем настолько сильно, что всего за 28 лет они почти превратились в самостоятельный вид.

Будучи ответственным за структурные и морфологические особенности животного, набор генов в клетке также является основой поведенческих особенностей, которые позволяют ему взаимодействовать с соседями и средой обитания путем, гарантирующим выживание.

Это можно объяснить тем, что особенности организма передаются следующим поколениям исключительно через гены. В поддержку данной точки зрения могут быть приведены свидетельства из области моделей поведения, наблюдаемых у животных. Поведение, если говорить простым языком, служит активным ответом животного на его окружение и наряду с ростом и размножением представляет собой один из тех факторов, которые являются определяющими для живых организмов.

Исследования песни зяблика (Fringilla coelebs) привели к интереснейшей догадке относительно роли обучения в поведении. Выяснилось, как показано на сонограмме внизу, что молодые зяблики, выращенные в изоляции,
Страница 5 из 10

способны лишь на примитивную песню, а чтобы воспроизвести ее в полно-ценном виде, они должны вначале услышать песни других особей в природе.

Птицы сбиваются в стаю, когда появляется ястреб, тем самым осложняя последнему задачу схватить отдельную особь. Бегающие травоядные меняют направление движения, чтобы спастись от более быстроногого хищника, и потому он выбивается из сил раньше, чем добывает кого-то из них. Молодые птицы остаются рядом с матерями, пока не станут достаточно взрослыми, чтобы защищать себя самостоятельно.

Эти явления, как и все аспекты поведения, эволюционировали, чтобы способствовать выживанию. Ген, который привносит способ поведения, не помогающий выживанию вида, вскоре устраняется.

Брачные ритуалы – очень сложный аспект поведения. Точно исполненный птицей элемент демонстрационного танца или движение головы ящерицы, когда она приближается к предполагаемому брачному партнеру, указывают их будущим парам, что они находятся в состоянии готовности к размножению и являются представителями нужного вида. Последнее обстоятельство важно, поскольку, хотя спаривание между двумя родственными, но тем не менее разными видами может приводить к появлению потомства, оно почти наверняка окажется бесплодным. Такое спаривание – напрасная трата времени и сил с эволюционной точки зрения, поскольку не может успешно распространять гены существа, и поэтому его следует избегать.

Все эти действия являются инстинктивными наследственными типами поведения. Другие типы поведения приобретаются путем научения, но в конечном счете также проистекают из общей совокупности генов животного. Умение вырабатывать подходящее действие методом проб и ошибок или по примеру других особей вокруг себя – способность, даваемая животному его генами.

Самцы манящих крабов (Uca spp.) привлекают брачных партнеров, взмахивая своими крупными «манящими» клешнями. Жесты у видов, обитающих в одной и той же местности, варьируют по траектории и скорости движений и гарантируют, что ими будут привлечены самки только нужного вида. Поскольку лишь спаривание особей одного вида приводит к появлению плодовитого потомства, самцы, не обладающие генами, определяющими правильный тип движений, будут выбраковываться.

Агрессия – это элемент поведения, который, возможно, сложнее, чем кажется на первый взгляд. Можно было бы задать себе вопрос: почему, если цель агрессии состоит в том, чтобы убрать конкурентов, животные не сражаются насмерть всякий раз, когда случается конфликт? Если не считать того, что здесь возникает очевидный риск, ответ, вероятно, состоит в том, что у животного нет никакой возможности убить всех своих потенциальных конкурентов; убивая отдельных особей, оно с равной вероятностью приносит пользу как себе, так и этим самым конкурентам. В большинстве случаев схватка в животном мире принимает форму ритуализованных сражений и демонстрации агрессии, которые чреваты незначительными физическими повреждениями для участвующих в них особей, но устанавливают главенство того или иного участника. Таким образом животное, побеждающее в состязании, достигает желаемого – получает или отстаивает в схватке ресурс – без того, чтобы пострадать от ранений. Проигравший также не внакладе: он избегает серьезных ранений и сохраняет возможность участвовать в дальнейших состязаниях, где может рано или поздно добиться успеха. Сложно увидеть, как эта стратегия могла быть выработана путем научения, и наиболее вероятно, что она является итогом эволюционного развития; животные, применяющие ее, с большей вероятностью будут участвовать в воспроизводстве, и поэтому гены, ответственные за такое поведение, получают преимущество при передаче перед другими, которые проявляются в менее успешных формах поведения.

Во всем животном царстве различные формы поведения предназначены для того, чтобы гарантировать скорее выживание генов индивидуума, нежели выживание его самого. Исключение делается в отношении самых близких родственников, поскольку чем ближе родственник, тем большее количество сходных генов в его генотипе.

Оборонительный инстинкт, который заставляет птицу-мать идти навстречу опасности и даже жертвовать собственной жизнью, чтобы спасти выводок, – это особенность поведения, рассчитанная на то, чтобы обеспечить выживание собственных генов. Поскольку гены птицы-матери представлены в ее потомстве и несколько особей из выводка имеют лучшие шансы для размножения и распространения своих генов, нежели одиночная птица-родитель, для ее генов выгоднее сохранить жизнь птенцов, даже ценой своей собственной жизни. Менее очевидно поведение, способствующее выживанию генов, у общественных насекомых, таких как пчелы и муравьи. Член такой группы будет сражаться до смерти, чтобы обеспечить выживание колонии. В данном случае члены колонии гораздо ближе друг к другу по набору генов, нежели другие животные в пределах одной размножающейся популяции, поэтому выживание колонии гарантирует выживание генов особи, несмотря на гибель ее самой.

Может показаться, что многие брачные приспособления, особенно такие, как у птиц, скорее снижают шансы на выживание особи, нежели повышают их. Брачное оперение самцов многих птиц, будучи привлекательным для потенциальной партнерши, одновременно делает их заметными для хищников. Птицы, обладающие особенно длинными и яркими перьями хвоста, должны испытывать большие неудобства, спасаясь от врага. Возможно, такие помехи для выживания могут представлять собой способ демонстрации того, насколько успешен данный самец – если он выжил, когда все работает против него, стало быть, просто обязан быть хорошим! Поэтому самку инстинктивно привлекает самец, устраивающий наиболее экстравагантное токование.

Форма и развитие

Естественный отбор устанавливает правила, диктующие, какая именно форма жизни наиболее пригодна для заселения определенного места обитания. Эта эволюционная тенденция может породить большое количество разных, но внешне схожих животных. Если животные происходили от общего предка и независимо развивались в сходном эволюционном направлении, говорят, что они эволюционировали параллельно. Если предки были разные, а животные эволюционировали в различных направлениях, которые в итоге привели к образованию сходной внешности, их эволюция называется конвергентной. Пример параллельной эволюции можно увидеть в развитии Equus, лошади, появившейся в конце третичного периода в Северной Америке, и Toatherium, тоатерия, замечательно схожего с ней копытного, которое в это же время эволюционировало на изолированном тогда континенте – в Южной Америке. Эти две формы развивались независимо в сходном направлении от схожих копытных предков в ответ на одинаковый набор условий внешней среды. Пример конвергентной эволюции можно найти в развитии акулы (Carcharodon), рыбоящера (Ichthyosaurus) и дельфина (Delphinus) – три животных из совершенно разных классов выработали сходную обтекаемую форму, плавники и хвост, чтобы занять одну и ту же нишу в одной и той же среде обитания – нишу активного морского рыбоядного хищника.

В трио, представленном акулой, рыбоящером и дельфином, лишь акула
Страница 6 из 10

произошла от морских предков. Рыбоящер и дельфин произошли от живших на суше рептилии и млекопитающего соответственно. Несмотря на коренным образом различающееся происхождение, все они выработали сходную обтекаемую форму тела, соответствующую их водному образу жизни, и все вместе образуют яркий пример конвергентной эволюции.

Одним из следствий того, что определенные типы облика животных соответствуют определенным экологическим нишам, является то, что сильно удаленные друг от друга местности с одинаковыми условиями климата и окружающей среды могут поддерживать существование фаун, очень схожих внешне, даже если они эволюционировали от разных корней. Тропические травянистые равнины Южной Америки, Африки и Австралии были одновременно населены животными со сходными физическими характеристиками – длинноногими бегающими травоядными, быстрыми хищниками, подземными насекомоядными существами и медлительными тяжеловесными пожирателями листвы. В Австралии они были сумчатыми, в Африке – плацентарными, а в Южной Америке – представителями обеих групп. Несмотря на разное происхождение, многие из этих существ внешне походили друг на друга. Подобные ситуации возникали не только в разных местах одновременно, но и в разное время в разных местах.

Влияние географической широты оказывает два причудливым образом контрастирующих один с другим эффекта на облик и форму животных. Первый, известный как правило Бергмана, предсказывает, что в пределах группы родственных форм животные, обитающие ближе к полюсам, будут крупнее. Второй, правило Аллена, утверждает, что – опять-таки в пределах группы родственных форм – те, кто живет ближе к полюсам, будут обладать более короткими конечностями. Оба эффекта являются, по сути, мерами по сохранению тепла: первый сохраняет температуру тела, а второй предохраняет от обморожений.

Изменения окружающей среды, связанные с промышленной революцией, дали черным мутантным формам (Б и В) березовой пяденицы (Biston betularia) преимущество в рабочих районах, где они почти полностью заместили ранее доминировавшую серо-белую крапчатую форму (A).

Генетические изменения могут быть небольшими и почти незаметными либо давать результат, коренным образом меняющий облик вида. Наземная улитка (Cepaea nemoralis) живет в разных местах обитаниях в лесном поясе умеренного климата и может иметь один из нескольких типов окраски раковины. Если местность открытая и безлесная, лучше всего улитку маскирует однородная желтая окраска раковины: особей с иными отметинами хищники легче замечают и быстрее съедают. На земле, покрытой листовой подстилкой, лучше замаскированы коричневые полосатые формы и вместо них уничтожаются другие. Это дает начало популяциям преимущественно желтых улиток на открытой местности, поросшей травой, и коричневым полосатым улиткам в лесной местности. Сходный эффект наблюдался у березовой пяденицы (Biston betularia) в раннюю эпоху человеческой промышленной революции. До той поры вид состоял преимущественно из крапчатых серо-белых особей, отлично маскировавшихся на покрытых лишайниками стволах деревьев, где они жили. Черная форма, также встречавшаяся в популяции, была легко заметна и чаще поедалась птицами, из-за чего стала редкостью. С развитием тяжелой промышленности деревья покрывались копотью и чернели, обеспечивая превосходный фон для маскировки черной формы. Белая форма в таком случае отсеивалась хищниками, и популяция бабочек стала состоять преимущественно из черных особей. Позже, когда были приняты законы о чистоте воздуха, в атмосферу и на стволы деревьев стало попадать меньше копоти, и популяция пяденицы вернулась назад, к преобладанию серо-белых особей. Эти изменения задействовали только разновидности в пределах одной и той же размножающейся популяции, и все время, пока они происходили, существовал постоянный обмен генетическим материалом. Если, однако, изменения условий окружающей среды были бы постоянными, а разные особи изолированными одна от другой, со временем они стали бы разными видами.

Мимикрия – это особый случай явления имитации, при котором существо, обычно с целью защиты, принимает облик иного животного, или растения, или даже неодушевленного объекта вроде птичьего помета. Если одно животное подражает другому, существуют две важные формы этого явления. О первой, известной как мимикрия Мюллера, говорят в случае, когда некоторое число опасных или несъедобных видов вырабатывает сходную окраску либо рисунок, чтобы получать защиту совместно. Животные, демонстрирующие данную форму мимикрии, имеют тенденцию к приобретению броских цветов, которые делают их видимыми издалека на окружающем фоне и служат предупреждением. Вторая форма, мимикрия Бейтса, распространяется на совершенно безвредных животных, выработавших окраску или внешнее сходство с несъедобными или опасными видами, чтобы получить преимущество от их предупреждающей внешности и таким способом избегать хищников. Существуют и формы мимикрии, позволяющие хищнику приблизиться к жертве, которой он сам подражает. Мастерами мимикрии являются насекомые, особенно бабочки с их броскими узорами на крыльях, но она также встречается у позвоночных и растений.

Как мы уже видели, скорость эволюции в большей степени зависит от скорости изменения окружающей среды, чем от каких-то особенностей животных как таковых. Но даже в этом случае заметно, что чем «выше» ступень эволюционной лестницы, на которой стоит животное, тем быстрее оно эволюционирует и что животные эволюционируют быстрее, чем растения. Однако это впечатление может быть обманчивым. Возможно, мы, люди, просто уделяем больше внимания различиям у форм жизни, с которыми наше родство ближе.

Эволюция всегда считалась процессом, протекающим очень и очень постепенно – одно маленькое изменение за другим, и так на протяжении миллионов лет. Тем не менее существует свидетельство того, что гораздо чаще она совершает внезапные скачки, когда вновь эволюционировавший вид формируется стремительно, а затем остается в стабильном состоянии на протяжении долгого времени.

Рассматривая жизнь травянистых равнин Африки и Австралии во времена, близкие к эпохе человека, и сравнивая ее с жизнью, существовавшей на равнинах Южной Америки немного раньше, в середине третичного периода, мы можем увидеть, что животные со схожим образом жизни имели склонность эволюционировать в существ сходной внешности и размеров в соответствующих местах обитания. Не имеет значения, что эти места обитания разделены временем, пространством или и тем и другим одновременно; они являются единственным наиболее значимым эволюционным фактором, определяющим внешность живых существ. Крупные растительноядные звери, очень похожие внешне на носорогов, и длинноногие стремительные травоядные появлялись во всех трех местообитаниях. Эволюционировали хищники, насекомоядные и всеядные животные, внешне похожие друг на друга. Наиболее явственно сходными группами были роющие насекомоядные существа и нелетающие птицы, которые в связи с их высокоспециализированным образом жизни явно развивались схожими путями.

Цепи питания

Пищевая цепь –
Страница 7 из 10

фундаментальное понятие экологии, представляющее собой порядок, в котором организмы поедают друг друга. Правильнее будет представить этот процесс как пирамиду, а не как цепь, поскольку в любом местообитании гораздо большее число животных находится на низших звеньях цепи, нежели на высшем звене. В основании пищевой пирамиды лежат растения – первичные продуценты, использующие энергию солнца, чтобы синтезировать первичную пищу из углекислого газа воздуха и минеральных веществ почвы. От миллиардов членов этого широкого основания пирамиды все цепи питания тянутся наверх – к хищным животным, стоящим на ее вершине. Например, на далеком Севере в эпоху человека растения, успевшие развиться в течение короткого полярного лета, служили пищей насекомым, которых поедали мелкие птицы, а тех, в свою очередь, ели мелкие хищники вроде лисиц, которых в конце концов поедали крупные хищники, такие как белый медведь. Сходным образом микроскопический фитопланктон, существующий в море в это же время, находится в основании пищевой цепи, которая протягивается через рыб и тюленей снова к белому медведю. На белых медведей в животном царстве никто не охотится, хотя, когда они умирают, появляются падальщики, а микроорганизмы из числа находящихся в основании пищевой цепи кормятся на трупах, разлагая их вплоть до неорганических веществ, которые служат пищей растениям в основании пирамиды. Если исключить мир паразитов, где число организмов, питающихся на каждом уровне, скорее возрастает, чем уменьшается, пищевые пирамиды, подобные показанным выше, могут быть построены для любого типа местообитания на Земле, и в каждом случае на вершине будет находиться единственный хищник или небольшая группа хищников.

На вершине пищевой пирамиды находятся хищники – последнее звено в цепи передачи энергии, начавшейся с растений, исходных продуцентов пищи. Эта пища в форме листвы и плодов переходит к травоядным, находящимся на пирамиде выше, и в итоге через них – к хищникам. Подобные пирамиды существуют по всему миру, от тропиков до полюсов. Иногда хищник, представленный здесь белым медведем, может находиться на вершине пирамиды, включающей как наземные, так и водные организмы. Сложные пищевые взаимоотношения, которые существуют между растениями и животными, живущими совместно в одном местообитании, объединяются в самодостаточную структуру, известную как экосистема. Экосистемы в тропических областях могут включать тысячи видов.

На примере с клеверным полем (1) интересно предположить, что может случиться при удалении одного уровня пищевой пирамиды. Если полевки окажутся по большей части уничтожены болезнью (2), совы лишатся пищи и вскоре покинут это место (3), предоставив популяции насекомых возможность бесконтрольно размножаться (4). Эта ситуация вряд ли затянется, и свободная ниша будет быстро занята одним из трех способов: здесь поселится совершенно новое насекомоядное существо, например небольшая птица, принеся с собой своего хищника (5), или сюда вторгнется иной вид полевок, а вслед за ним вернется сова (6), или остатки прежней популяции полевок, устойчивые к болезни, возродят ее (7).

Общими уровнями пирамиды являются уже упоминавшиеся выше первичные продуценты, травоядные и хищники. На всех уровнях пирамиды действуют падальщики и микроскопические разрушители органики. Если один из ключевых членов уровня пищевой пирамиды будет удален из-за болезни или изменений внешней среды, ее структура потеряет стабильность. Виды, находящиеся ниже освободившейся ячейки, стали бы бесконтрольно увеличивать свою численность до тех пор, пока позволяет пищевая база, и тогда их численность контролировалась бы голодом. В действительности это происходит редко, и вскоре появляется другой хищник, способный занять свободную нишу.

Растения могут использовать лишь столько энергии солнца, сколько в состоянии уловить. Ее трудно измерить, но путем превращения в сахар может быть запасено не больше 0,8 % энергии солнечного света, падающего на растение. Химическая энергия из сахара используется им для создания всевозможных органических составляющих, которые идут на построение его «тела». Именно эти сахар и энергию, заключенную в нем, получает травоядное животное, когда ест траву. Тем не менее и оно не может использовать всю запасенную растением энергию для своих нужд: максимальная эффективность животных составляет около 10 %. Этот фактор 10 % присутствует во всех звеньях пищевой цепи и означает, что в любом местообитании 100 травоядных могут обеспечить пищей только 10 хищников, которые, в свою очередь, обеспечивают существование лишь одного хищника «второго уровня». Данные построения упрощены и относятся только к животным одного размера. Вес животных является более важным фактором, чем число особей. Фактор 10 % справедлив для любого уровня в сложном переплетении пищевых цепей и является важным, поддерживающим стабильность формы пищевой пирамиды.

Согласно приблизительному эмпирическому правилу, хищник, которому для существования требуется одна единица энергии, должен взять 10 эквивалентных единиц энергии от травоядных, являющихся его добычей. Сходным образом каждое травоядное должно получить 10 единиц от растительности. Энергия для растений поступает исключительно от солнца, и вновь из 10 единиц, поглощенных растением, не более одной используется эффективно.

Зависимость эффективности питания от солнечного света – это причина, по которой разные части Земли обеспечивают существование весьма неодинакового числа живых организмов. В тропиках, где солнечное освещение интенсивно, растениям для усвоения доступно намного больше солнечной энергии. Следовательно, там, где позволяют другие факторы, такие как количество осадков, на единицу площади приходится больше растительности, чем в областях с умеренным и полярным климатом. Этот огромный массив растительного материала может обеспечить пищей множество травоядных, которые, в свою очередь, являются пищей для большого числа хищников. В противоположность этому в Арктике солнечная энергия, которую трудно назвать избыточной, поддерживает существование гораздо более скудной растительности, и потому там немного травоядных и значительно меньше хищников.

Разнообразие видов на каждом уровне пищевой пирамиды зависит от разнообразия растений в ее основании. В тропических саваннах, например, где есть низкие злаки, травы, не относящиеся к злакам, высокие злаки, кустарники и деревья, каждый из большого числа видов туземных животных поедает разный набор растений. Животное, питающееся корнями, не соперничает с поедающими низкорослые травянистые растения или высокие злаки. Даже те виды, которые имеют во многом похожий рацион, заметно различаются в иных аспектах таким образом, что не конкурируют друг с другом непосредственно – например один вид питается днем, а другой ночью. Таким способом число экологических ниш увеличивается, а процесс эволюции гарантирует, что все они будут заполнены.

Принцип, согласно которому природа не терпит пустоты, верен в биологии в той же степени, что и в физике. Экологическая ниша никогда не остается пустовать надолго – кто-то
Страница 8 из 10

эволюционирует, чтобы ее заполнить, как только она образуется. Внутри видов, однако, конкуренция сильна, и каждая отдельно взятая ниша прокормит только определенное число особей. Столкновения между особями одного вида обычно преобразованы в стилизованные демонстрации, во время которых участникам наносится минимальный ущерб. Территория сохраняется, а брачные партнеры выбираются без реализации какой-либо реальной схватки. Это стратегия, которая обеспечивает больший успех в поддержании позиции живого существа в экосистеме.

Влияние хищничества плотоядных животных слишком мало, чтобы нарушить баланс пищевой пирамиды. Добывая только слабых, больных и стареющих особей – для них это вынужденная практика по той причине, что здоровое взрослое животное обычно может спастись бегством или отразить нападение, – они гарантируют, что выживет лишь наиболее приспособленный. Если приспособленные и здоровые взрослые особи вида не могут убежать или отразить нападение, этот вид быстро вымирает, а нишу занимает другой. В этом смысле хищники могут считаться не более чем просто нетерпеливыми падальщиками.

История жизни

Земля существует около 5000 млн лет и на протяжении примерно 3500–4000 млн из них населена организмами того или иного рода. Тем не менее точную летопись окаменелостей земной жизни можно проследить примерно на 620 млн лет в прошлое – до того времени, когда впервые появились твердые скелеты. Тогда жизнь существовала только в море, а суша была безжизненной. Распределялись суша и море не так, как в наши дни. Расположение материков и океанов постоянно меняется из-за процесса, который называется тектоникой плит. Земная кора состоит из множества плит, словно частей футбольного мяча.

Эти плиты все время нарастают вдоль одного края, где составляющее их вещество поднимается из недр Земли, и разрушаются на другом краю – там плита подныривает под соседнюю и ломается. Дно поднимается вдоль срединно-океанических хребтов, а разрушение идет по линии глубоководных желобов. Материал, вовлеченный в эти процессы, представляет собой океаническую кору, богатую окисью кремния и магнезитом. Континенты состоят из коры иного рода, богатой окисью кремния и алюминием, которая находится на поверхности, и таким образом континенты двигаются в разных направлениях по земному шару благодаря тектонической активности. Этот процесс происходил на протяжении всего геологического времени и будет продолжаться, пока существует мир. Важность тектоники плит для истории жизни на Земле не ограничивается географией. Тектоника плит частично влияет на характер глобального климата, который меняется в течение сравнительно коротких в геологическом смысле отрезков времени и, несомненно, вносит свой вклад в относительно внезапные изменения, происходящие с доминирующими формами жизни на нашей планете. Взаиморасположение континентов на ключевых стадиях развития этих животных в какое-то время имело важное значение для их распространения по Земле и становилось причиной явных различий между формами жизни, населяющими разные массивы суши.

Происхождение жизни

Солнце и Солнечная система образовались из бесформенного облака межзвездного газа, медленно вращающегося в космосе со скоростью примерно один оборот за 10 млн лет. В ходе вращения оно начало сжиматься под влиянием своей собственной силы тяготения и вследствие этого стало вертеться быстрее. Силы, участвующие в этом процессе, сплющили газовое облако в диск, в котором вещество начало собираться в центре, формируя Солнце. Ближе к краям диска образовались завихрения, которые стали собирать вещество, формируя зачатки того, что позже окажется планетами. Частицы межзвездной пыли, состоящие главным образом из вкраплений железа и частиц соединений кремния, начали объединяться. Они слипались в сгустки и собирались вместе в завихрениях под действием гравитации. Железо – оно тяжелее – погружалось в середину, а окись кремния оставалась на поверхности, давая протопланетам железное ядро, окруженное каменной мантией. Так сформировались внутренние планеты – Меркурий, Венера, Земля и Марс. Остальные планеты образовывались из более легких материалов, таких как углекислый газ и аммиак, которые конденсировались из газа, когда температура продолжала снижаться. В это время сжатие материи в раннем Солнце запустило процесс слияния ядер, и Солнце начало излучать энергию – данный процесс продолжается последние 5000 млн лет и будет идти в следующие примерно 5000 млн лет.

Возможно, первая атмосфера Земли содержала много водорода, метана и аммиака, напоминая состав атмосферы внешних планет Солнечной системы. Со временем к этим элементам добавились водяной пар и углекислый газ, выделяющиеся при дегазации вновь образовавшихся скальных пород. Вода вначале оставалась в виде пара, пока жар атмосферы не позволял ей конденсироваться. С другой стороны, столь же вероятно, что первичная атмосфера из водорода, метана и аммиака была по большей части «сдута» излучением Солнца вскоре после своего образования и первая стабильная земная атмосфера сформировалась преимущественно из углекислого газа и водяного пара, выделившихся из недр через фумаролы и вулканы. В любом случае вода, конденсировавшаяся и выпадавшая в виде дождя, когда Земля остыла, несомненно содержала молекулы аммиака, метана и водорода, растворенные в ней. Когда этот раствор подвергался высокоэнергетическому воздействию вроде ударов молний или ультрафиолетового излучения Солнца, могли происходить химические реакции, способствовавшие синтезу сложных органических соединений, таких как аминокислоты, – материала, из которого состоят живые существа.

С другой стороны, возможно и совершенно иное объяснение происхождения сложных органических молекул. Простые органические соединения типа формальдегида имеются в межзвездной пыли – частицах углерода, образующихся при взрывах звезд. Молекулы этих органических веществ могли аккумулироваться на частицах и постепенно объединяться в длинные химические цепочки сложных органических молекул, которые представляют собой первый шаг в химии живого. Газ, выделившийся из звезд, может содержать кислород, углерод и азот. Если в нем больше кислорода, чем углерода и азота, могут формироваться органические молекулы типа полисахаридов (простые сахара). Если преобладающим элементом является азот, более вероятно образование нуклеиновых кислот и хлорофилла – воспринимающего энергию вещества зеленых растений. Под воздействием сил гравитации межзвездная пыль может собираться в сгустки и при стечении обстоятельств попадать на околосолнечную орбиту в виде комет. Если такая комета столкнулась с Землей в ранние эпохи ее формирования, что более чем вероятно, межзвездные органические молекулы могли попасть на поверхность нашей планеты.

В эпоху, предшествовавшую времени точных научных исследований, человек верил, что Земля в том виде, в котором он ее знал, и все живые существа, которые были ему знакомы, являлись результатом единственного сверхъестественного акта творения, произошедшего в определенное время в сравнительно недавнем прошлом. Ископаемые
Страница 9 из 10

морские животные, найденные на суше вдали от моря и позже признанные свидетельством значительных изменений в очертаниях суши и моря, были объявлены результатом карающего потопа.

Как бы то ни было, очевидно, что горячие моря на жаркой поверхности Земли 4500 млн лет назад содержали сложные органические молекулы, необходимые для построения и развития живых существ.

Первым объектом на Земле, который точно мог бы называться живым, была молекула с уникальной способностью к самовоспроизведению. Для этого она должна быть способной разрушать сложные молекулы вроде полисахаридов и использовать их составные части для построения собственной зеркальной копии. Любая особенность исходной молекулы, помогавшая ей в решении данной задачи, повышала бы ее шансы на выживание, и такая особенность могла сохраняться в процессе самовоспроизведения. Любая особенность, которая замедляла этот процесс, вела бы к вымиранию молекулы. Эволюция началась.

Такая деятельность продолжалась до тех пор, пока исходные полисахариды, находившиеся в «первичном бульоне», не оказались полностью израсходованы. Дальше протоорганизмы могли бы остаться без пищи, если бы не выработали способность самостоятельно синтезировать органику из неорганических веществ, используя солнечную энергию. Этот процесс, известный как фотосинтез, стал возможным благодаря наличию молекул хлорофилла.

Со временем в объект репликации стало включаться больше одной сложной молекулы – так появилась компактная органическая структура, известная как клетка. Некоторые из наиболее примитивных клеток не имели центрального ядра – места, где находится репродуктивный аппарат клетки (вместо этого данная функция была рассеяна по цитоплазме). Также существовали клетки с ядрами, у которых было гораздо большее будущее; в ходе эволюции мелкие клетки вошли в состав более крупных, оставаясь в них для выполнения каких-то жизненно важных межклеточных функций. Постепенно возникли более сложные образования, состоящие больше чем из одной клетки, и каждая клетка стала играть свою, особую роль в поддержании жизни всего объединения. В процессе эволюции появился организм.

Эволюция первых многоклеточных организмов могла идти по одному из двух возможных путей. Свободноживущие клетки разных типов могли объединяться в одну структуру, или же клетки переставали полностью обособляться в процессе деления и сохранялись вместе как единое целое. Но каким бы ни был путь их возникновения, эти многоклеточные организмы должны были быть более успешными, нежели сумма их частей: в ином случае они бы не выжили.

Клетки многоклеточных организмов не одинаковы – у них различающиеся функции в зависимости от того, какие ткани и органы они образуют. У более высокоорганизованных форм жизни некоторые из них являются строительными элементами, подобно клеткам костной ткани. Другие, такие как клетки крови, обеспечивают защиту от болезней и перенос питательных веществ, тогда как, скажем, нервные клетки образуют системы органов чувств и связи в организме. Дифференциация клеток в большинстве случаев происходит на стадии зародыша. Вначале все его клетки одинаковы. Исходная оплодотворенная яйцеклетка делится на две дочерние клетки, а те – на четыре, и так до тех пор, пока не образуется несколько сотен одинаковых клеток. В определенный момент развития зародыша эта стадия прекращается и образуются специфические клетки, предназначенные для выполнения определенных ролей в организме. Как происходит эта дифференциация клеток, неясно. Все ядра клеток содержат одинаковую генетическую информацию, но только часть ее используется при образовании новой клетки. Какие-то внутриклеточные факторы, вероятнее всего находящиеся внутри клеточного ядра, должны определять, какая часть генетического кода используется для построения новой клетки, таким образом, чтобы она могла выполнять присущую ей функцию.

Подходящие условия в атмосфере и на поверхности делают возможным существование жизни на планете, лежащей в пределах пояса вокруг Солнца, который называется экосферой. Этот пояс начинается чуть ближе орбиты Венеры и заканчивается за орбитой Марса. Меркурий, где максимальная температура на поверхности достигает +370 °C, слишком горячий, чтобы поддерживать существование жизни, а внешние планеты, становясь все холоднее вплоть до Нептуна, где максимальная температура ниже ?200 °C, чересчур холодны.

Ранние формы жизни

В ранних океанах процветали одноклеточные и многоклеточные существа, растения и животные. Растения могли поглощать солнечную энергию и фотосинтезировать пищу из неорганического материала. Животные, неспособные самостоятельно производить пищу с помощью солнечного света, получали энергию, поедая растения. Это отличие в способах питания является основным между растениями и животными и отражается на строении и физиологии этих двух типов организмов. У растений, нуждающихся только в солнечном свете и неорганических веществах, нет необходимости передвигаться, оказавшись в благоприятных условиях, поэтому их клетки твердые и имеют жесткие стенки. У них есть плоские поверхности, поглощающие энергию (листья), которые направлены в сторону солнца, и удерживающие структуры (корни) – они поглощают питательные вещества и предохраняют растение от сдувания ветром или смывания водой. С другой стороны, животные в большинстве случаев должны передвигаться с места на место, поэтому у них в процессе эволюции выработались более гибкие клеточные стенки и система мускулов, делающие возможным передвижение. У животных развились органы чувств и нервная система, при помощи которых они оценивают окружающую обстановку и передают сигналы мускулам.

Геометрия самого тела животных связана с их способностями к передвижению. Те из них, кто не являются почти бесформенными, малоподвижными комками, фильтрующими пищу из проходящего течения воды, обладают либо радиальной, либо двусторонней симметрией.

Баланоглосс (Balanoglossus spp.) (В) – это полухордовое, промежуточная стадия между беспозвоночными и хордовыми – группой, которая включает позвоночных. Сходство между личинками баланоглосса, морской звезды (A) и голотурии (Б) – а обе последние являются иглокожими – может означать происхождение хордовых от беспозвоночных предков.

В начале кембрийского периода впервые в большом количестве появились животные с твердым покровом. Поскольку в норме в ископаемом состоянии сохраняются только панцири животных, лишь с этого времени становится хорошо известной дальнейшая история жизни. В кембрии эволюционировали все крупные группы (типы) животных – и радиально, и двусторонне симметричные. Животные с радиальной симметрией включают кишечнополостных (медузы и кораллы) и иглокожих (морские звезды и морские ежи). Формы, имеющие двустороннюю симметрию, распадаются на четыре основные группы: плеченогие – почти вымершая группа раковинных животных, моллюски – двустворчатые, морские улитки и похожие на наутилусов головоногие, членистоногие – представлены преимущественно трилобитами, а также несколько классов червей и червеобразных животных.

В мире беспозвоночных существует две
Страница 10 из 10

формы симметрии: радиальная (A), при которой животные симметричны относительно оси, проходящей через их тело от вершины до основания, и двусторонняя (Б) – при ней животные симметричны относительно плоскости, проходящей вдоль их тел.

От одной из групп этих червеобразных животных, хордовых, в силуре произошли первые животные, имеющие позвоночник, – класс примитивных бесчелюстных рыб и предки всех позвоночных. Также в это время растения впервые вышли на сушу. На прибрежных мелководьях возникла группа растений, которые могли выживать, не будучи полностью погруженными в воду. В процессе эволюции у них появились жесткие стебли, призванные обеспечивать им опору, и внутренняя проводящая система, чтобы доставлять из земли воду и растворенные минеральные вещества и переносить из листьев произведенную пищу.

Побочным эффектом фотосинтеза стало выделение в атмосферу свободного кислорода. Содержание кислорода увеличивалось, тогда как содержание углекислого газа уменьшалось, делая состав воздуха более подходящим для жизни животных. Членистоногие были первыми животными, которые получили преимущество от улучшения условий в атмосфере, и среди ранних растений обитали скорпионы с многоножками.

Сходство между лопастеперыми рыбами, такими как эустеноптерон, и ранними четвероногими вроде ихтиостеги (Ichthyostega) демонстрирует явное свидетельство происхождения четвероногих. У ихтиостеги рыбий позвоночный столб из однородных позвонков был замещен более тяжелым и прочным образованием и полностью развитой грудной клеткой, позволяющими поддерживать животное на суше. Ее конечности, хотя и длиннее, чем рыбьи плавники, по форме похожи на них.

Следующий, девонский, период известен как век рыб. Первыми эволюционировавшими от примитивных бесчелюстных форм были плакодермы (пластинокожие) вроде динихтиса (Dinichthys) – панцирные рыбы, которые имели челюсти, появившиеся в процессе эволюции из костей жаберных дуг. До конца девона их по большей части заместили хрящевые рыбы типа кладоселахии (Cladoselache), предшественники акул и скатов. Костные рыбы, наиболее разнообразные и широко распространенные, существовали бок о бок с этими хрящевыми видами. Они делились на две основные группы – лучеперых рыб, которые оказались самыми успешными, и лопастеперых, таких как эустеноптерон (Eustenopteron). Последняя группа наиболее важна с эволюционной точки зрения. Обитание в мелких пресных водоемах, периодически пересыхавших, дало им эволюционный стимул выживать вне воды. Когда водоем исчезал, эустеноптерон переползал по суше к соседнему при помощи пары мускулистых плавников, эволюционировавших из органов-стабилизаторов. В это время он мог дышать воздухом при помощи примитивных легких, развившихся из выростов глотки. Жизнь позвоночных на суше началась, пусть даже она была лишь временной мерой, позволяющей продолжить существование в воде. К концу девона появились животные, похожие на земноводных, способные проводить большую часть взрослой жизни на суше. Их называют общим термином «четвероногие», подчеркивая основную особенность – наличие четырех ног. Один из их ранних представителей, ихтиостега (Ichthyostega), хотя и обладал рыбьими признаками строения хвоста и черепа, демонстрирует типичное строение конечностей, снабженных пальцами и поддерживаемых сильными поясами конечностей, наблюдаемыми у наземных животных. От многочисленных пальцев у этих ранних форм вскоре осталось лишь пять – такой тип строения является базовым для всех современных наземных животных.

Ранние рыбы были бесчелюстными (агнатами): их рот представлял собой не более чем отверстие, ведущее в пищеварительный тракт. Челюстноротые рыбы впервые появились в девоне. Наиболее примитивные из них, плакодермы, были очень разнообразной группой панцирных видов с челюстями и зубами, сформировавшимися из костных пластинок на голове. Хрящевые рыбы, предки акул и скатов, также появились в это время. Костные рыбы, наиболее успешная группа, тоже произошедшая от бесчелюстных, могут быть разделены на два класса – лопастеперых рыб, обладающих мясистыми плавниками, и лучеперых, которые имеют плавники, состоящие из кожи, поддерживаемой роговыми лучами. Большинство видов рыб, существовавших в эпоху человека, принадлежало к классу лучеперых. Лопастеперые рыбы были представлены только четырьмя родами.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (http://www.litres.ru/pages/biblio_book/?art=23778114&lfrom=279785000) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Здесь представлен ознакомительный фрагмент книги.

Для бесплатного чтения открыта только часть текста (ограничение правообладателя). Если книга вам понравилась, полный текст можно получить на сайте нашего партнера.