Режим чтения
Скачать книгу

Сейчас. Физика времени читать онлайн - Ричард Мюллер

Сейчас. Физика времени

Ричард А. Мюллер

Ричард Мюллер, профессор Калифорнийского университета в Беркли, собирает все достижения современной физики и предлагает нам сложить из них пазл. Он рассказывает об открытиях Эйнштейна, о черных дырах, в которых, возможно, сосредоточена большая часть энтропии Вселенной, делится последними новостями из квантовой физики, а также исследует три модели движения времени.

Книга будет интересна студентам и преподавателям, а также всем, кто интересуется физикой и концепцией времени и хочет расширить свой кругозор.

На русском языке публикуется впервые.

Ричард Мюллер

Сейчас. Физика времени

Richard A. Muller

NOW

THE PHYSICS OF TIME

Научный редактор Азат Гизатулин

Издано с разрешения автора при содействии Brockman, Inc.

Все права защищены.

Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.

© 2016 by Richard A. Muller. All rights reserved

© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2017

* * *

Введение

Сейчас – это таинственное и эфемерное мгновение, меняющее свое значение каждый миг, – вполне оправданно ставило в тупик священников, философов и физиков. Понимание сейчас требует знания законов относительности, энтропии, квантовой физики, антивещества, обратного движения во времени, квантовой запутанности, Большого взрыва и темной энергии. Только сейчас в нашем распоряжении есть достижения физики, которые позволят понять, что же это все-таки такое – сейчас.

Ускользающее значение этого понятия долгое время было камнем преткновения в физике. Сегодня мы знаем, что такое замедление времени, возникающее под воздействием скорости и гравитации, и даже обратный его ход, согласно теории относительности, и все же ничего не добились в объяснении самого удивительного свойства времени – его течения и толкования слова сейчас. Фундаментальная физическая картина мира, известная как «пространственно-временная диаграмма», не дает ответа на эти вопросы. Физики иногда превратно считают отсутствие ответов доказательством и делают вывод, что течение времени – всего лишь иллюзия. Но это отступление перед природой. Пока нам будет неясно значение слова сейчас, невозможен прогресс в понимании времени – основополагающего аспекта окружающего мира.

В этой книге я постарался собрать воедино все современные достижения физики и сложить из них пазл, чтобы прояснить картину сейчас. К тому же пришлось убрать из головоломки элементы, ошибочно помещенные в некоторые ячейки.

Широкое понимание физики объясняет, почему до сих пор не удавалось решить ребус с толкованием сейчас. Физика не проста и не линейна, поэтому в книге приходится касаться огромного материала, которого, возможно, даже многовато для отдельного издания. Не стесняйтесь листать страницы вперед и назад, возвращаясь к идеям и концепциям, которые вы пропустили. Вообще все содержание этого труда вполне можно воспринимать как тайну, по мере приближения к которой проявляются некоторые ключи, способные приоткрыть завесу над ней.

По специальности и научной практике я прежде всего физик-экспериментатор: конструирую и использую опытное оборудование, чтобы раскрывать спрятанные от нас физические истины. Два моих проекта непосредственно связаны с пониманием времени: измерение остаточного микроволнового (реликтового) излучения, сохранившегося после Большого взрыва, и точное измерение прошлого расширения Вселенной, включая открытие темной энергии, которая обусловливает ускорение этого расширения. Должен признаться, что написал немало чисто теоретических работ, но только тогда, когда не хватало ассигнований на эксперименты или если я считал существовавшие теории ошибочными. Насколько мне известно, настоящая книга – единственная посвященная проблеме времени, которую написал физик, глубоко вовлеченный в экспериментальные исследования. Ниже я поделюсь мыслями относительно того, с какими трудностями и разочарованиями сталкиваются ученые в ходе таких разработок.

Путь к пониманию категории сейчас требуется разделить на пять частей.

Часть I, «Удивительное время», я начинаю с обсуждения вполне устоявшихся, но тем не менее удивительных аспектов понимания времени, которые в основном были открыты Альбертом Эйнштейном. Время не просто растягивается, замедляется и поворачивает вспять; подобным поведением оно затрагивает нашу повседневную жизнь. Работа GPS, навигационной системы, которая позволяет ориентироваться на местности и не заблудиться, целиком основана на уравнениях теории относительности Эйнштейна и на указанных выше странных, на первый взгляд, свойствах времени. Именно теория относительности позволила представить четырехмерный пространственно-временной континуум. Самый важный вывод части I: мы знаем о времени достаточно много, и хотя его природа непроста, она весьма определенна. Скорость течения времени зависит от скорости движения объектов и гравитации. Даже порядок возникновения событий – какое из них назвать первым – не универсальная истина. Более того, теория относительности Эйнштейна дает много структурных компонентов, необходимых для понимания нашего сейчас.

В части II, «Сломанная стрела», я убираю одну из деталей головоломки, которая ранее ошибочно была помещена в неподходящее для нее место. Эта деталь больше других сдерживала продвижение мысли в понимании сейчас. Речь идет о теории Артура Эддингтона[1 - Артур Эддингтон (1882?1944) – английский астрофизик. В разные годы – директор астрономической обсерватории в Кембридже, президент Королевского астрономического общества, президент Лондонского общества физиков. С 1920-х гг. сосредоточился на «фундаментальной теории», предполагающей объединение квантовой теории, теории относительности, космологии и гравитации. Прим. ред.], претендующей на определение направления течения времени: согласно этой теории, время идет от прошлого к будущему, и никогда не наоборот. Я сначала изо всех сил пытаюсь оправдать этот постулат и только потом разбираю его фатальные ошибки.

Эддингтон приписывал течению времени возрастание энтропии[2 - Энтропия – мера неупорядоченности системы. Прим. науч. ред.], меры хаоса во Вселенной. Сейчас мы знаем об энтропии во Вселенной гораздо больше, чем Эддингтон в 1928 году, когда предложил свою теорию. Я постараюсь доказать, что этот ученый был неправ. Именно течение времени увеличивает энтропию, а не наоборот. Энтропия не вызывает диктатуры, которую часто ей приписывают. Контроль над путями развития энтропии оказывается очень важным для нашего понимания сейчас.

Часть III, «“Жуткая” физика», знакомит читателя с еще одним важным элементом, необходимым для понимания сейчас, – таинственной квантовой физикой. Эта часть науки – пожалуй, наиболее успешная теория всех времен: в ней соотношение между предсказаниями ученых и наблюдениями составляет 10:10. Тем не менее квантовая теория одновременно и сбивает с толку, и внушает беспокойство. Неуловимые квантовые волны и попытки их измерения грубо противоречат теории относительности Эйнштейна. Их нельзя обнаружить или каким-то образом
Страница 2 из 13

использовать. Поведение квантовых волн бросает вызов нашему ощущению реальности и расширяет его, что очень пригодится в толковании сейчас. Наиболее интригующим (а возможно, и освобождающим наше мышление) следствием квантовой физики становится то, что прошлое больше не определяет будущее или определяет не полностью. Некоторые аспекты квантовой физики, в особенности такое странное явление, как квантовая запутанность[3 - Квантовая запутанность – ситуация, при которой квантовые характеристики двух или более частиц оказываются связаны. Прим. ред.], были подтверждены экспериментально, и эти (удивительные!) результаты экспериментов дают основание полагать, что ограниченная способность предсказывать будущие события навечно останется одним из фундаментальных слабых мест физики как науки.

В части IV, «Физика и реальность», я исследую пределы физики. Не беспокойтесь – время и сейчас не выходят за эти пределы. Они начинаются в физике, но наше восприятие их зависит от нашего же ощущения реальности, которое простирается за границы физики. Математика представляет собой реальный мир, который невозможно подтвердить физическими экспериментами. Даже такую простую вещь, как иррациональность ?2. Но есть другие явления, вполне реальные и не относящиеся к области физики. Например, вопросы типа: как выглядит голубой цвет? Отрицание нефизических и нематематических истин было названо физикализмом[4 - Физикализм – концепция логического позитивизма, разрабатываемая Карнапом, Нейратом и др. Сторонники физикализма считают критерием научности какого-либо положения из любой дисциплины возможность перевести его на язык физики. Положения, не поддающиеся такой операции, рассматриваются как лишенные научного смысла. Прим. перев.]. Он основан на вере и обладает всеми недостатками религии. К счастью, вопреки страстным надеждам Эйнштейна, современные доказательства подводят нас к тому, что физика – наука не полная, и она никогда не будет в состоянии описать всю нашу реальность.

В части V, «Сейчас», все детали сходятся в законченный пазл. Он дает объединенную картину того, что время течет, и раскрывает значение эфемерного момента, который мы называем сейчас. Решение кроется в четырехмерном понимании Большого взрыва. Взрывы во Вселенной создают не только новое пространство, но и новое время. Передняя ближайшая к нам граница времени и есть то, что мы называем сейчас, а течение времени – постоянный процесс создания новых сейчас. Мы ощущаем каждый момент отличным от предшествующих, потому что он – единственный, в котором можно сделать выбор и испытать свободу воли, влияя на собственное будущее и изменяя его. Вопреки утверждениям классических философов, мы исходим из того, что свобода воли совместима с физикой. Те же, кто утверждает обратное, обрекают себя на веру в религию физикализма. Мы можем влиять на будущее, используя не только научное, но и ненаучное знание (сопереживание, добродетель, этические нормы, честность, справедливость).

Я исследую три возможные четырехмерные модели движения времени. Наблюдаемое сейчас ускорение расширения Вселенной, связанное с темной энергией[5 - Темная энергия в космологии – вид энергии, введенный в математическую модель Вселенной ради объяснения ее наблюдаемого расширения с ускорением. Прим. ред.], должно сопровождаться увеличением скорости течения времени. Эта теория предполагает, что нынешнее время бежит быстрее, чем прошлое. На основании этого можно решить, что произойдет новое и, возможно, наблюдаемое замедление времени, новое космологическое красное смещение. Это способно повлиять на наше представление о начале Большого взрыва и эре инфляционной модели Вселенной[6 - Инфляционная модель Вселенной – гипотеза о физическом состоянии и законе расширения Вселенной на ранней стадии Большого взрыва (при температуре выше 1028 K), предполагающая период ускоренного расширения по сравнению со стандартной моделью горячей Вселенной. Прим. ред.], то есть том периоде ее расширения, который мы можем исследовать, обнаруживая появившиеся во время взрыва гравитационные волны, а их уже опосредованно изучать на явлении вращения плоскости поляризации микроволнового излучения[7 - Вращение плоскости поляризации света наблюдается при распространении линейно поляризованного света через оптически неактивное вещество, находящееся в магнитном поле (продольный магнитооптический эффект Фарадея). Прим. ред.].

Третья модель была задумана, когда в 2016 году международное исследовательское сообщество LIGO (Лазерно-интерферометрическая гравитационно-волновая обсерватория) сообщило об обнаружении на своих установках уникального явления – слияния двух черных дыр. Такие события создают новое пространство во Вселенной, а также, в соответствии с теорией четырехмерного пространства-времени, и новое время. Это время течет медленнее, если последующие события масштабнее по размеру, ближе к нам и излучают более сильный сигнал.

Для тех, кто интересуется математикой, подробности теории относительности и ее математический аппарат показаны в приложениях.

Давайте приступим к сбору нашего пазла.

Часть I

Удивительное время

Глава 1

Запутанная тайна

Великие философы имели весьма разноречивые и путаные представления о времени, но физика дала надежду на то, что мы поймем его

Время летит, как ветер;

Фрукты летят, как бананы.

    Детская считалка

Вот вам факт о вас самих, который мало кто знает. Возможно, даже никто, кроме вас. Он состоит в том, что именно сейчас вы читаете эту книгу. Я могу быть даже более точным: именно сейчас вы читаете слово сейчас.

Более того, вы знаете, что это правда, хотя я об этом не знал и до сих пор не знаю. Вы читаете слово сейчас именно сейчас, а мне этот факт совершенно неизвестен, если только я не стою за вашей спиной и вы не указываете пальцем на те слова, которые прочитываете.

Сейчас – это очень простое и одновременно удивительное и таинственное понятие. Вы знаете, что оно означает, но его значение трудно объяснить без постоянного хождения по кругу. «Сейчас – это момент времени, который отделяет прошлое от будущего». Хорошо, а теперь попытайтесь дать определение прошлому и будущему, не используя слово сейчас. То, что вы подразумеваете под «прошлым» и «будущим», постоянно меняется. Только недавно чтение вами этого абзаца лежало в плоскости будущего. Сейчас большая часть этого события уже в прошлом.

Теперь уже весь абзац в прошлом (если только вы не пропускаете строчки). Сейчас относится ко вполне определенному времени. Но это время беспрерывно меняется. Именно поэтому мы используем часы. Они сообщают нам цифры, связанные с сейчас. Цифры называют «настоящее», или «реальное» время. Часы обновляют его непрерывно, обычно ежесекундно. Движение времени неостановимо. Мы можем занимать одно и то же место в пространстве, но не во времени. Мы движемся во времени, но не контролируем этот процесс. Конечно, если только путешествия во времени не станут возможными.

Смысл сейчас – одна из многих тайн, заключенных в этом странном явлении, которое называется временем. Замечательно, что сегодня мы так много знаем о нем, особенно благодаря причудливым и
Страница 3 из 13

сверхъестественным понятиям, связанным с теорией относительности Эйнштейна. Но настолько же очевидно и то, что мы так мало знаем о фундаментальных характеристиках времени: что это вообще такое и как оно связано с окружающей нас реальностью. Эта книга – о времени. О том, что мы о нем знаем и чего не знаем.

Течет ли время? В 5 часов 12 минут утра 18 апреля 1906 года в Сан-Франциско произошло страшное землетрясение. Время этого природного катаклизма не изменилось; вы можете прочесть о нем в «Википедии» (https://ru.wikipedia.org/wiki/%D0%97%D0%B5%D0%BC%D0%BB%D0%B5%D1%82%D1%80%D1%8F%D1%81%D0%B5%D0%BD%D0%B8%D0%B5_%D0%B2_%D0%A1%D0%B0%D0%BD-%D0%A4%D1%80%D0%B0%D0%BD%D1%86%D0%B8%D1%81%D0%BA%D0%BE_(1906)). То, что течет, движется, – это наше понимание сейчас. Сейчас движется, изменяется и продвигается во времени.

Или, может быть, имеет больший смысл говорить, что время течет мимо этого сейчас. Вообще описать смысл слова «движение» довольно трудно. Говоря, что движется автомобиль, мы замечаем его положение в один момент времени и затем – в другой момент времени. Скорость движения машины будет определяться делением расстояния на время, которое заняло его покрытие. Например, это может быть столько-то миль в час. Такой подход к описанию сейчас никуда не годится. Сейчас – это именно сейчас. Остановитесь на секунду, и сейчас останется именно сейчас. Разве это сейчас движется? Да, ход времени иллюстрируется тем обстоятельством, что значение сейчас постоянно меняется. С какой же скоростью движется время? Со скоростью секунда в секунду.

Есть еще третий взгляд. Он состоит в том, что каждый момент генерируется новое время, и именно это вновь возникшее время – то самое сейчас. Лежат ли в основе этих взглядов философские либо физические различия? Можно ли свободно выбирать один из них или в том или ином больше истины и смысла, чем в других? Этот вопрос мы также исследуем на страницах книги.

Давайте предположим, что время остановилось. Вы заметите это? Каким образом? Или, например, оно унеслось скачками вперед или изменило скорость своего движения каким-то другим образом. Сможете обнаружить разницу? Это, пожалуй, нелегко; по крайней мере, если бы вы использовали то изображение времени, которое часто встречается в кинематографе. Например, в фильмах «Темный город»[8 - «Темный город» – драма, США, 1998 г. Убийцу, не помнящего имени и прошлого, преследует полицейский Фрэнк Бастед. Его ищут жена, чужаки, а он пытается разобраться в происходящем. Прим. ред.], «Клик: с пультом по жизни»[9 - «Клик: с пультом по жизни» – комедийная драма, США, 2006 г. Архитектору попадает в руки пульт ДУ, с помощью которого можно прокручивать жизнь вперед или назад. Но однажды пульт начинает управлять скоростью и выбором момента жизни. Герой понимает, как неверно использовал время. Прим. ред.], «Интерстеллар»[10 - «Интерстеллар» – научно-фантастический фильм, США, 2014 г. Засуха приводит к продовольственному кризису; группа исследователей отправляется сквозь червоточину пространства-времени, чтобы узнать, как переселить человечество на другую планету. Прим. ред.] или «Лара Крофт: расхитительница гробниц»[11 - «Лара Крофт: расхитительница гробниц» – фильм, США, 2001 г. Экранизация серии компьютерных игр Tomb Raider, посвященных археологу и искательнице приключений Ларе Крофт. Прим. ред.]. Восприятие нами момента сейчас, судя по всему, определяется количеством миллисекунд, необходимых для того, чтобы наши глаз, ухо или кончики пальцев послали в мозг сигнал, который он заметит, запечатлеет и запомнит. Для человеческого существа это несколько десятых секунды, для мухи – несколько тысячных секунды. Кстати, поэтому так трудно ловить мух. Для мухи ваша рука приближается словно в замедленной съемке, совсем как в фильме «Останавливающие время»[12 - «Останавливающие время» – фантастический фильм, США, 2002 г. Молодой человек находит часы, которые дают возможность повысить скорость восприятия мира в 25 раз. С этим и связаны приключения. Прим. ред.].

Скорость течения времени вопрос не только научной фантастики. Теория относительности дает некоторые вполне определенные примеры этого, скажем, в парадоксе о близнецах[13 - Парадокс близнецов (парадокс Ланжевена, парадокс часов) – первый и наиболее известный парадокс специальной теории относительности, основанный на тезисе, сформулированном Эйнштейном в работе «К электродинамике движущихся тел». Статус «парадокс» появился позднее. Прим. ред.]. Тот близнец, который путешествует в пространстве со скоростью, близкой к скорости света, испытает более медленное течение времени, чем его брат, оставшийся на Земле. Оба одинаково ощутят течение времени, но его скорость для каждого будет разная. Ниже мы изучим этот странный парадокс детальнее.

Надежда на эвентуальное (возможное при соответствующих условиях, обстоятельствах. Прим. ред.) понимание сейчас основывается на том гигантском прогрессе, который сделала физика в XX веке. Но сейчас давайте вернемся в прошлое, чтобы взглянуть на сложности, с которыми сталкивались в этом вопросе древние.

Не поддающееся описанию сейчас

Труд Аристотеля под названием «Физика»[14 - Аристотель. Физика. М.: КомКнига, 2016. Прим. ред.] доминировал в науке вплоть до Возрождения. Это была научная библия средневековой католической церкви. Отрицание некоторых положений Аристотеля привело Галилея к суду инквизиции. Четыре части своей «Физики» автор посвятил разбору идей о времени и сейчас и в результате сам оказался совершенно сбитым с толку. Он писал:

«Сейчас» не часть чего-то, поскольку часть есть мера целого, которое должно состоять из частей. Время же нельзя себе представить состоящим из многих «сейчас». Кроме того, «сейчас», которое кажется связывающим прошлое и будущее, – остается ли всегда одним и тем же или все время становится другим? Трудно ответить. Если оно все время другое и другое, и если разные части времени не одновременны (если только одна не содержит другую, а другая не содержится в первой, как более короткое время содержится в более длинном), и если «сейчас», которого нет, но которое существовало в прошлом и прекратило свое существование, то многие «сейчас» не могут существовать одновременно с другими, а предшествующее «сейчас» всегда должно прекращать свое существование[15 - Aristotle, Physics, trans. R. P. Hardie and R. K. Gaye, Internet Classics Archive.].

Глубоки эти мысли или просто запутанны? Пытаясь быть точным в отношении сейчас, Аристотель запутывается в собственных словах. Мы до известной степени можем успокаивать себя тем, что даже такой почитаемый мыслитель находил этот вопрос непостижимым.

Блаженный Августин[16 - Аврелий Августин (354?430) – христианский богослов и философ, влиятельнейший проповедник, епископ Гиппонский, один из отцов христианской церкви. Прим. перев.] в своей «Исповеди»[17 - Блаженный Августин. Исповедь. СПб.: Благовест, 2014. Прим. ред.] жаловался на неспособность понять, что такое течение времени. Он писал:

Что есть время? Если никто не спрашивает меня об этом, я знаю ответ; если я хочу объяснить это, то ничего не знаю.

Это сетование, написанное в V веке до н. э., отзывается и в нашем, XXI веке. Да, мы знаем, что представляет собой время. Так почему же не можем описать его? Каким тогда знанием о времени мы располагаем?

Загадка Августина частично проистекает из его утверждения о том,
Страница 4 из 13

что Бог всемогущ, всеведущ и вездесущ. Из этого следует удивительное дополнительное заключение: Бог должен быть безвременен. Эта замечательная мысль подготовила основу для современной физики, описывающей поведение вещей пространственно-временными диаграммами, в которых ничего не сообщается о том, что время течет или что сейчас существует.

Для человека, говорит Августин, нет прошлого или будущего, а есть только три настоящих: «настоящее прошлых вещей, то есть память; настоящее существующих вещей – зрение; и настоящее вещей будущих – ожидание». (Не воодушевило ли это утверждение Диккенса на его «Рождественскую песнь в прозе: святочный рассказ с привидениями»[18 - Диккенс, Ч. Рождественская песнь в прозе. М.: Клевер-Медиа-Групп, 2016. Прим. ред.]?) Однако в других словах Августина сквозит неудовлетворенность таким объяснением. Он говорит: «Мое сердце жаждет раскрыть эту самую запутанную загадку».

Альберт Эйнштейн тоже был озабочен идеей сейчас. Философ Рудольф Карнап[19 - Рудольф Карнап (1891?1970) – немецко-американский философ и логик, ведущий представитель логического позитивизма и философии науки. Прим. перев.] пишет в своей Intellectual Autobiography («Интеллектуальной биографии»):

Эйнштейн сказал, что проблема «сейчас» серьезно его беспокоит. Он объяснил, что испытание этого «сейчас» становится для человека чем-то особенным, принципиально отличающимся от прошлого и будущего, но это важное отличие возникает не в рамках физики. Тот факт, что этот опыт человека не может быть понят наукой, казался ему болезненной, но неизбежной уступкой природе. Он сделал вывод: «Вокруг проблемы “сейчас” существует нечто очень важное, что, однако, лежит вне сферы досягаемости науки».

Карнап не соглашается с этим заключением Эйнштейна, заявляя: «Поскольку, в принципе, наука может сказать все, что только может быть сказано, вопросов, оставшихся без ответов, не может быть». Однако человек, не соглашающийся с Эйнштейном, должен быть очень осторожен. Его раздумья, на первый взгляд, легко отвергнуть как эмоциональные и принять за не такие глубокие, как наши. Однако простые по форме утверждения Эйнштейна никогда нельзя отождествлять с простотой его мысли. Философы иногда убеждают себя, что достигают большой глубины мышления, когда пользуются вычурно-искусственными оборотами типа «хроногеометрический[20 - Хроногеометрия – коротко говоря, теория пространства и времени. Прим. ред.] фатализм» (что, по существу, просто признание постоянства скорости света). Эйнштейн же, напротив, умел сказать серьезные вещи так, что их мог понять даже ребенок. Эта способность сделала его одним из самых цитируемых ученых всех времен.

Некоторые теоретики, вместо того чтобы воспринимать отсутствие понятия течения времени (как это делал Эйнштейн), понимают это как указание на существование какой-то более глубокой истины. Например, известный современный физик-теоретик, профессор Колумбийского университета Брайан Грин в книге The Fabric of the Cosmos[21 - Издана на русском языке: Грин Б. Ткань космоса: Пространство, время и текстура реальности. М.: Либроком, 2009. Прим. перев.] утверждает, что «теория относительности объявляет нашу Вселенную эгалитарной (уравнительной. Прим. ред.), в которой каждый момент так же реален, как и любой другой». Он повторяет за Августином, что «в нас живет постоянная иллюзия прошлого, настоящего и будущего». Грин утверждает, что, поскольку теория относительности ничего не говорит о течении времени, такое течение должно быть всего лишь иллюзией, а не частью реальности. Для меня эта логика превратна. Подобный подход подразумевает, что вместо требования от теории объяснения наших наблюдений мы должны подгонять наблюдения под теорию.

Атеисты высмеивали Эйнштейна за то, что в свои последние годы он «отходил от физики», пристрастившись к религии. Но им не удавалось развеять его озабоченность тем, что наука неспособна дать ответы на фундаментальные вопросы мироздания: что такое течение времени и что такое сейчас. Многие ученые убеждены: то, что не может быть доказано физикой, нельзя считать частью окружающей нас реальности. А можно ли проверить подобные утверждения? Или они также представляют собой своеобразные религиозные верования? Философы назвали подобные догмы физикализмом. Есть ли у нас способ проверить и доказать, что физика может объяснить все явления в природе? Или такой веры ожидают от любого физика, как всегда, неформально, но жестко требуя принадлежности к христианству от любого потенциального кандидата на пост президента США? Если вы не согласны с физикализмом, то не рискуете ли быть осмеянным за свой сдвиг в сторону религии, как это произошло с Эйнштейном?

Сэр Артур Эддингтон уважаем среди физиков за большой вклад в науку – как в теорию, так и в экспериментальные исследования. Но больше всего его помнят по теории стрелы времени[22 - Эддингтон считал, что постепенное рассеивание энергии доказывает необратимость стрелы времени, летящей в одном направлении. Но это понятие не соответствует основным законам физики, которые во времени действуют как в прямом направлении, так и в противоположном. Согласно им, если обратить пути всех частиц во Вселенной вспять, энергия стала бы накапливаться, а не рассеиваться: холодный кофе начал бы нагреваться, здания поднялись бы из руин, а солнечный свет вернулся к Солнцу. Прим. ред.] и за объяснения того таинственного обстоятельства, что мы помним прошлое, но не будущее. И даже несмотря на то, что Эддингтон предложил объяснение направления времени, он не понимал факта его течения. В книге The Nature of the Physical World («Природа физического мира», 1928) он писал: «Великое свойство времени заключается в том, что оно идет вперед». И тут же сожалел: «Но это именно тот аспект времени, который физики иногда склонны отрицать».

В работе A Brief History of Time[23 - Издана на русском языке: Хокинг С. Краткая история времени. СПб.: Амфора, 2015. Прим. ред.] Стивен Хокинг[24 - Стивен Хокинг – английский физик-теоретик и популяризатор науки, профессор математики. Изучал теорию возникновения мира в результате Большого взрыва, а также теорию черных дыр. Прим. перев.] даже не упоминает о загадке понятия сейчас. Его книга сосредоточена в основном на том, что мы знаем о времени и в чем современные теории ошибаются. Хокинг говорит о стреле времени, но не о его течении; об относительности времени, но не о тайне сейчас. Почти все последние книги, посвященные проблеме времени, в этом похожи на книгу Хокинга. Они делают акцент на возможные теории, которые объединили бы физические уравнения, а не на концепции, разъясняющие значение сейчас и течение времени.

Но в жизни всегда есть место надежде.

Нарушенная симметрия

Подход к пониманию концепции сейчас отправляет нас в путешествие по просторам абстрактной и удивительной физики, физики времени, смысла реальности и современных исследований свободы воли.

Мы начнем с обсуждения замечательного и странного поведения времени, которое граничит с невероятным, но между тем вполне определенно. Важнейшие прорывы в этом отношении были сделаны в начале 1900-х годов, когда Эйнштейн установил, что скорость течения времени зависит от скорости передвижения объекта и гравитации. Время эластично,
Страница 5 из 13

растяжимо и даже способно на обратное течение. Эти его свойства настолько значительны, что используются в современных спутниках GPS[25 - GPS (Global Positioning System – система глобального позиционирования) – спутниковая система навигации, обеспечивающая измерение расстояния, времени и определяющая местоположение во всемирной системе координат WGS 84. Прим. ред.]. Если бы в системе GPS не применялись открытия Эйнштейна, такие спутники ошибались бы в определении нашего местоположения на много километров. У вас есть мобильный телефон? Тогда в кармане вы носите прибор, использующий теорию относительности.

Самые странные свойства времени обнаруживаются в черных дырах – тех таинственных объектах, которые сейчас ученые находят по всей Вселенной. Если вы упадете в черную дыру, будете расщеплены на мельчайшие части и (в соответствии с существующими теориями) совершите путешествие в бесконечность и даже дальше, что мы с вами позже обсудим. Посмотрите на черные дыры свежим взглядом, и вы увидите гораздо больше, чем просто черноту. И не надо падать в них, чтобы подвергнуть чудовищному стрессу свое ощущение реальности. На черные дыры распространяется стрела времени. Новые теории (пока не получившие подтверждения) утверждают, что в черных дырах (как и в «горизонте событий»[26 - Горизонт событий – воображаемая граница в пространстве-времени, разделяющая те события (точки пространства-времени), которые можно соединить с событиями на светоподобной бесконечности светоподобными траекториями световых лучей, и те события, которые так соединить нельзя. Так как светоподобных бесконечностей у пространства-времени две: относящаяся к прошлому и будущему, – то и горизонтов событий может быть два: прошлого и будущего. Горизонт событий прошлого разделяет события на изменяемые с бесконечности и на неизменяемые; а горизонт событий будущего отделяет события, о которых можно что-либо узнать, хотя бы в бесконечно отдаленной перспективе, от событий, о которых узнать ничего нельзя. Прим. перев.] в бесконечности) сосредоточена большая часть энтропии Вселенной.

Затем мы бросим взгляд на пострелятивистский мир, когда Эддингтон, размышляя над направлением времени, пришел к заключению, что оно определяется вторым законом термодинамики: то есть уровень хаоса в мире, измеряемый как его энтропия, повышается и будет расти всегда. Это странный закон. Он построен не на базе физики, а на том факте, что наша Вселенная исключительно хорошо организована, и законы вероятности говорят, что развиваться ей некуда, кроме как вниз, к увеличивающемуся беспорядку и случайностям и в конечном счете к холодной (тепловой) смерти. Это ли будущее нас ожидает? Необязательно. Растущий хаос во Вселенной парадоксальным образом сопровождается ее возрастающей упорядоченностью, которая связана с формированием планет, жизни и цивилизаций.

Я покажу, что энтропийному направлению движения времени есть серьезные альтернативы, включая некоторые таинственные аспекты квантовой физики, до сих пор непонятые. В наши дни часто делаются ссылки на «теорию измерений»[27 - Теория измерений предполагается как теория о классификации переменных величин по природе информации, которая содержится в числах – значениях этих переменных величин. Прим. ред.] (239 миллионов запросов в поисковой системе Google). Однако на самом деле подобной теории не существует. Наиболее драматическим открытием в науке об измерениях было подтверждение некоторых странных свойств квантовой запутанности, то есть явления, позволяющего предполагать наличие скоростей выше скорости света. Вполне возможно, что за еще не открытой «теорией измерений» может скрываться ответ на некоторые из вопросов, которые перед нами ставит время. Квантовая физика должна сыграть решающую роль в распутывании смысла понятия сейчас.

Некоторые люди полагают, что время – атрибут нашего сознания, которое никогда не может и не будет сведено к физике. Хотя многие физики верят, что вся окружающая нас реальность подвластна только их науке. Я покажу, что это не так. Что есть знание, такое же реальное, как и научные наблюдения, но которое никогда не было обнаружено экспериментально и не может быть подтверждено измерениями. Простым примером служит тот факт, что ?2 не может быть представлен в виде целочисленной дроби[28 - Иррациональность числа подразумевает, что его нельзя представить в виде дроби, числитель и знаменатель которой – целые числа. Прим. науч. ред.]. Другой пример – невозможность знать, как выглядит голубой цвет.

Можно ли назвать стрелу времени психологическим явлением? Если бы время повернуло назад, мы бы заметили это? Великий физик Ричард Фейнман[29 - Ричард Фейнман (1918?1988) – американский физик-теоретик. Один из создателей квантовой электродинамики. Входил в число создателей атомной бомбы. Разработал метод интегрирования по траекториям в квантовой механике (1948), а также так называемый метод диаграмм Фейнмана (1949) в квантовой теории поля, с помощью которого можно объяснять превращения элементарных частиц. Лауреат Нобелевской премии по физике (1965). Прим. ред.] показал, что мы можем рассматривать позитроны[30 - Позитрон – античастица электрона, имеющая такую же массу, как и электрон, но положительный заряд. Прим. науч. ред.] (частицы антивещества, служащие топливом для космических кораблей в научной фантастике, а сегодня используемые в медицине для диагностики) в качестве электронов, движущихся во времени вспять. Может ли и наше сейчас повернуть назад? Можем ли мы допустить такое?

В заключение я постараюсь показать, что течение времени, как и понимание таинственного и ускользающего от нас сейчас, относится к области компетенции науки – и не в понятии энтропии, а в космологической физике. Чтобы понять наше сейчас, мы должны объединить не только теорию относительности и Большого взрыва, но и осознать, что рост энтропии имеет свои границы. Нужно рассмотреть те идеи, которые предоставляет нам в этом отношении квантовая физика, особенно (и, возможно, наиболее удивительно) в смысле понимания свободы воли. Новое понимание свободы воли, хотя практически ненужное для объяснения сейчас, сыграет ключевую роль в осознании нами, почему же это сейчас так важно.

* * *

Вместе пространство и время обеспечивают сцену, где мы живем и умираем; на ней классическая физика делает свои предсказания. Однако до начала 1900-х годов сама эта сцена не была изучена как следует. Предполагалось, что мы должны обращать внимание на пьесу, на выведенные в ней персонажи, повороты сюжета – но не саму сцену. И появился Эйнштейн. Его гений состоял в том, что он понял сам и открыл остальным: сцена нашей жизни находится в пределах царства физики, а время и пространство обладают удивительными свойствами, которые можно изучать и использовать, чтобы предсказывать будущее. Даже несмотря на то что Эйнштейн тоже не смог понять смысла сейчас, его работа имела ключевое значение для обретения нами знания. Эйнштейн подарил физике время.

Глава 2

Возвращение Эйнштейна в детство

Важнейшие вопросы о времени очень просты…

Истинно говорю вам, пока вы не изменитесь и не станете такими, как маленькие дети, вы никогда не поймете время.

    Евангелие от Матфея, 18:3 (с
Страница 6 из 13

изменениями)

Несмотря на внешнюю простоту, нижеследующая фраза не принадлежит детской книге о времени:

Если, например, я скажу: «Этот поезд прибывает в 7 часов», то я имею в виду примерно следующее: «Нахождение маленькой стрелки моих часов и прибытие поезда будут одновременными событиями».

Это обманчиво простое предложение появилось в одном из престижных физических журналов своих дней, Annalen der Physik[31 - Annalen der Physik («Анналы физики») – немецкий научный журнал, посвященный проблемам физики. Один из старейших, издается с 1799 года. Публикует оригинальные статьи в области экспериментальной, теоретической, прикладной и математической физики, а также смежных областей. Прим. ред.], 30 июня 1905 года. Статья, в которой оно содержалось, была, безусловно, самой глубокой и важной публикацией с 1687 года, когда Ньютон заложил фундамент классической физики в своих «Принципах» («Математических началах натуральной философии»[32 - Ньютон И. Математические начала натуральной философии. М.: ЛКИ, 2014. Прим. ред.]). Ее автор однажды станет символом гениальности, научной продуктивности и 95 лет спустя будет назван в журнале Time («Время» – очень говорящее название) человеком века. Подобную его честь мало кто оспаривал. Слова же о маленьких наручных часах принадлежат Альберту Эйнштейну.

Статья называлась «К электродинамике движущихся тел». Что общего может быть между маленькой стрелкой на часах и прибытием поезда с электродинамикой, то есть исследованиями в области электричества и магнетизма? Оказывается, очень много. Статья Эйнштейна на самом деле касалась времени и пространства: он хотел ввести эти понятия в область физики. Более подходящим названием скорее могло бы быть «Теория относительности – революционный прорыв в нашем понимании времени и пространства». До Эйнштейна эти понятия были просто координатами, которые использовались для постановки и решения задач. Ответ на вопрос «Когда прибудет поезд?» мог быть сформулирован как определенный момент времени. Эйнштейн показал, что не все так просто.

Теория относительности

Что такое время? Его трудно определить. Ньютон надменно избегал этого вопроса. В упомянутом монументальном труде он писал: «Я не даю определений времени, месту или движению, поскольку это и так всем хорошо известно». Может быть, и известно, но труднопостижимо. Эйнштейн тоже не дал определения времени, но он удивительно талантливо его исследовал, открыв при этом совершенно неожиданные его свойства. Он продолжает изложение в своей основополагающей статье о теории относительности в стиле педанта, до смешного элементарном, а иногда даже скучном:

Если в точке А пространства расположены часы, то наблюдатель, находящийся в этой точке, может определять временные значения происходящих в непосредственной близости от него событий, отыскивая положения стрелок на часах одновременно с происхождением этих событий.

Кому он адресует свою статью? Простым любителям? Разве не утверждает совершенно очевидное? Зачем использует этот детский стиль?

Ученый делал все это по вполне определенным причинам. Чтобы добиться прогресса в изысканиях, требовалось разбить скрытые предрассудки и неправильные представления, засевшие в подсознании его коллег. Для этого он прежде всего должен был раскрыть эти идеи как не обязательно вполне очевидные и, что еще более важно, – как не соответствующие истине. Он обратился к самым фундаментальным понятиям – тем, которым вас учили в детстве, когда вы впервые сумели определить время на часах; понятиям абсолютности времени. К тому, что даже если часы идут неправильно, их можно синхронизировать с другими; что если отец говорит вам нечто сделать сейчас, то значение этого сейчас для вас и для него одинаково.

Эйнштейну требовалось удалить из головоломки те детали, которые были вставлены в нее неправильно.

И он пришел к выводу, что несколько очевидных, само собой разумеющихся принципов не соответствовали истине. Его логические рассуждения строились на базе явлений электричества – отсюда и название статьи. Трудность теории относительности состояла не в сложности ее математического аппарата – в статье Эйнштейн использует только элементарную алгебру; а в тех искаженных представлениях о времени и пространстве, которые имели ее читатели, крупнейшие мировые ученые.

Попробуйте заставить себя вновь подумать о времени и пространстве так, как о них думает ребенок. Можете вспомнить, когда вы впервые подумали, что скорость течения времени непостоянна? Для меня время буквально «летело» во время школьных каникул или в ходе забав и приключений. Оно чрезвычайно замедляло свой бег при посещениях стоматолога (который не верил в обезболивающие средства) или когда я в магазине ожидал маму, примеряющую обувь. Газета New York Times в 1929 году цитировала Эйнштейна: «Когда ты сидишь с красивой девушкой два часа, они кажутся тебе минутой, но если ты сидишь на горячей печи хотя бы минуту, покажется, что прошло два часа».

Через 10 лет после своих основополагающих работ по теории относительности Эйнштейн опубликовал статью в ее развитие, объясняя природу гравитации. Эту часть теории он назвал общей теорией относительности (ОТО). Тогда ученый решил, что ее первая часть, не касающаяся вопросов гравитации, должна быть переименована в специальную теорию относительности (СТО)[33 - Ее еще называют частной теорией относительности. Прим. науч. ред.]. Эта смена названия оказалась неудачной и вызывала путаницу. Было бы гораздо понятнее, если бы Эйнштейн назвал свою первую работу просто теорией относительности, а вторую расширенной теорией относительности. Великий ученый вынашивал мысли о дальнейшем развитии теории и о пересмотре теорий электричества и магнетизма, а также включении их всех в объединенную теорию. Но ему это не удалось.

Откуда вообще появилось здесь слово относительность? Чтобы понять это, остановитесь на секунду и ответьте на вопрос: какова ваша скорость в этот момент?

Вы сказали: «Нуль», – потому что сейчас сидите? Вы можете сказать: «Нуль», – также сидя в самолете, который летит на высоте 12 000 метров. Горит табло «Пристегните ремни», и стюардесса объясняет, что передвижение по самолету запрещено. Поскольку вы сидите не двигаясь, ваша скорость должна составлять 0 км/ч.

Или вы сказали: «900 км/ч», – поскольку с такой скоростью двигается самолет? Или вы читаете книгу на катере, покачивающемся на воде в устье Амазонки, и даете ответ: «1670 км/ч», – поскольку это скорость вращения Земли в районе экватора (40 000 км за 24 часа)? Возможно, вы достаточно знаете астрономию, чтобы сообщить о скорости вращения Земли вокруг Солнца – «30 км/с». Если бы еще вспомнили о скорости вращения Солнца вокруг центра Млечного Пути и скорости движения Млечного Пути во Вселенной (которую можно определить по микроволновому излучению), видимо, вы бы произнесли: «1 500 000 км/ч».

Какой из этих ответов правильный? Разумеется, все. Ваша скорость зависит от той платформы наблюдения, на которой вы находитесь. Физики называют ее системой отсчета. Этой системой могут быть Земля, самолет, земная ось, Солнце или космическое пространство. Или что-то между ними.

Когда вы летите в самолете, можете ли не согласиться с кем-то,
Страница 7 из 13

находящимся на Земле, относительно скорости вашего передвижения? Нет, такое несогласие выглядело бы глупо. Вы оба знаете, что вы неподвижны относительно самолета, но передвигаетесь со скоростью 900 км/ч относительно Земли. Оба ответа правильные.

Поразительным новым качеством относительности стало то, что не только скорость, но и время зависит от системы отсчета. Абсолютного времени, о котором вы узнали от своих родителей и учителей, не существует. Вы не только будете получать разные показания времени в зависимости от того, какую точку отсчета выберете – землю, самолет, планету Земля или космическое пространство; вы получите еще и разную скорость течения времени. Это означает, что промежуток времени между двумя событиями, между двумя тиканьями ваших часов, не универсален и абсолютен, а зависит от выбранной вами системы отсчета.

В других книгах по теории относительности вы, видимо, читали, что разные наблюдатели, двигающиеся с разными скоростями, «расходятся между собой в восприятии действительности». Это совсем не так. Даже если это утверждают самые великие физики мира, они понимают, что это не соответствует истине. (Признаюсь, я тоже попал в такую ловушку в одной из своих же ранних статей по теории относительности. Тогда я думал, что это поможет яснее донести предмет до читателей. Я ошибался.)

Утверждения о «несогласных между собой наблюдателях» вызвали большую путаницу и затруднение понимания людьми теории относительности, чем ее сложный математический аппарат. Наблюдатели в относительности не согласны между собой только в степени ошибки по поводу скорости передвижения кого-то в самолете. Но все эти наблюдатели знают, что скорость относительна, а ее показатель зависит от точки отсчета. Они также знают (если внимательно изучали ОТО), что то же самое верно и для времени. Блеск теории относительности состоит в том, что все наблюдатели и везде согласны друг с другом.

Когда я спросил о вашей скорости, вы, возможно, сочли, что это вопрос с каким-то подтекстом, и отказались отвечать. Вы подумали: «Скорости по отношению к чему?» Отлично. Вы правильно поняли направление моей мысли.

Замедление времени

Эйнштейн показал, что время того или иного события зависит от системы отсчета: земной поверхности, самолета, планеты Земля, Солнца или космического пространства. При этом время события будет разным. Для небольших скоростей (то есть около 1 500 000 км/ч или меньше) эта разница будет небольшой. Но все равно она существует. Когда системы отсчета движутся быстро – близко к скорости света, время начинает различаться очень сильно. Уравнения для расчета времени в разных системах отсчета несложные. Это просто алгебраические формулы, включающие квадраты и квадратные корни. Я привожу их в Приложении 1 (#litres_trial_promo).

Давайте рассмотрим числовой пример. Предположим, вы находитесь в космическом корабле, который двигается со скоростью 97 % скорости света по отношению к Земле. Начнем с промежутков времени, потому что формула их расчета весьма доступна. Если взять космический корабль за систему отсчета, промежуток между вашими соседними днями рождения составит один год. Если принять системой отсчета Землю, тот же самый промежуток будет длиться не один год, а три месяца. Через несколько мгновений я покажу, как сделать соответствующие вычисления.

Вот что скажет внимательный наблюдатель на Земле: «Временной интервал между двумя днями рождения (двумя событиями) в системе отсчета Земли составил три месяца, а в системе отсчета космического корабля – один год». Наблюдатель на корабле скажет то же самое. Наблюдатели не расходятся во мнениях о временных интервалах больше, чем они могут расходиться в оценке скорости движения объектов.

В какой системе отсчета находитесь лично вы? Это вопрос с подтекстом. Однако в любом случае попробуйте ответить на него.

Вы находитесь во всех системах. Эти системы существуют только для определения движения тел отсчета по отношению к ним. Можете выбрать любую систему отсчета. Если ваша скорость в одной из них равна нулю (скажем, если вы находитесь в самолете), то эта система называется собственной системой отсчета. По отношению к собственной системе отсчета Солнца (где оно находится в покое) вы двигаетесь со скоростью 29 км/с, совершая один оборот вокруг светила за год.

Вы можете запутаться в этом вопросе, если ранее читали другие книги о релятивистском замедлении времени, в которых приводятся объяснения вроде «часы, находящиеся в движении, как нам кажется, идут медленнее, чем ваши». Да, это так, но это не вся правда. Вам не только кажется, что они идут медленнее: они на самом деле идут медленнее – если замерять их ход в вашей системе отсчета. В собственной системе отсчета они идут быстрее, чем в вашей. Это не парадокс или противоречие. Во всяком случае, не большее противоречие, чем скорость движения человека в самолете – 0 км/ч или 900 км/ч? Все наблюдатели согласны между собой.

Обозначим буквой b отношение скорости объекта к скорости света (далее безразмерная скорость). Свет (в вакууме) двигается с безразмерной скоростью b = 1 (c/c). Если вы будете двигаться с половинной скоростью света, то ваша безразмерная скорость b составит 0,5. Фактор замедления времени, который возникает при сравнении двух временных интервалов в двух системах отсчета, называется гамма (обозначается греческой буквой ?), а формула его расчета – ? = 1/?(1 ? b?), где b есть нормированная (безразмерная) скорость.

В электронной таблице если В1 – это безразмерная скорость b, то ? = 1/SQRT(1?B1^2). В случае с нашим космическим кораблем подставьте В1 = 0,97, и вы получите гамма-фактор (фактор замедления времени), который составит примерно 4. Это означает, что за один год, прошедший по часам на космическом корабле, в земной системе отсчета проходит около 4 лет. Другими словами, время на корабле течет примерно на четверть быстрее, чем на Земле. Проведите в полете на космическом аппарате один год, и вы состаритесь всего на три месяца. Это несколько смешно и даже удивительно, что несмотря на трудности с определением течения времени, мы располагаем точными формулами для расчета относительной его скорости.

Рекомендую поиграть этой формулой с помощью электронных таблиц или программируемого калькулятора. Вы увидите, что при параметре b, равном 0 (то есть при нулевой скорости объекта), гамма составляет 1. Так что, когда вы находитесь в покое, никакого замедления времени не происходит. Если вы подставите b = 1, вы обнаружите, что ? составит 1:0, то есть бесконечность. Это означает, что когда корабль движется со скоростью света, время на нем (по отношению к системе отсчета Земли) останавливается. Секунда в собственной системе отсчета объекта длится бесконечное количество времени в системе отсчета Земли.

Относительность времени легко измерима, по крайней мере в экспериментальной физике. Учась в докторантуре Калифорнийского университета в Беркли, я каждый день сталкивался с замедлением времени. Я тогда работал с радиоактивными элементарными частицами, которые называются пионы, мюоны и гипероны. (Отдельные радиоактивные частицы безвредны. Они могут нанести серьезный ущерб, только когда вы имеете дело с миллиардами таких частиц.)

Радиоактивные
Страница 8 из 13

частицы спонтанно «распадаются» (лучше говорить «взрываются»), и в среднем каждая имеет 50 % шансов распасться (период полураспада).

Период полураспада урана составляет около 4,5 миллиарда лет, радиоактивного изотопа углерода – 5700 лет, а трития[34 - Тритий – изотоп атома водорода с двумя нейтронами и одним протоном в составе ядра. Прим. науч. ред.] – 13 лет. В моих наручных часах есть тритий в смеси с фосфором. (Радиоактивность трития так слаба, что она даже не покидает циферблата.) Этой смесью покрыты стрелки часов, которые светятся ночью. Через 13 лет интенсивность их свечения уменьшится наполовину. Радиоактивность со временем ослабевает. (Поэтому взрывы отдельных частиц мы называем «распадом», или «разрушением».) Пионы в моей лаборатории имели несравнимо меньший период полураспада, около 26 миллиардных долей секунды (26 наносекунд). Это может показаться микроскопическим отрезком времени, но только для человека. Для iPhone это долго. Встроенные в мой iPhone часы выполняют 1,4 миллиарда рабочих циклов в секунду. Я могу совершить 36 элементарных вычислений за те 26 наносекунд, что распадается пион.

В лаборатории Лоуренса, где я провел большинство своих экспериментов, я изучал быстро двигающиеся пионы, чья безразмерная скорость b составляла 0,9999988. Мы создали пучок пионов: интересно было посмотреть, что произойдет, когда они столкнутся с протонами. Их период полураспада оказался в 637 раз больше, чем у пионов, находящихся в состоянии покоя. Это соответствовало расчетному гамма-фактору[35 - Известному также как Лоренц-фактор. Прим. науч. ред.] для таких скоростей. Я был докторантом, и до этого теория относительности была для меня абстракцией, с которой я знакомился по лекциям и книгам. Увидеть ее собственными глазами было потрясением.

На физическом факультете университета в Беркли мы создали лабораторию, где студенты последних курсов могут измерять фактор замедления времени в рамках своих курсовых работ. При этом они используют не пионы, а мюоны, элементарные частицы, попадающие на Землю вместе с космическими лучами. Релятивность (относительность) становится реальностью. Сегодня для многих физиков это повседневная жизнь.

Означает ли замедление времени, что если я лечу в самолете, то проживаю большее время, чем на Земле? Да, и гамма-фактор для самолета был измерен в 1971 году учеными Джозефом Хафеле и Ричардом Китингом[36 - В 1971 г. Дж. Хафеле и Р. Китинг дважды облетели вокруг света, сначала на восток, затем на запад, с 4 комплектами цезиевых атомных часов, после чего сравнили «путешествовавшие» часы с часами, остававшимися в Военно-морской обсерватории США. Эксперимент стал одним из тестов ТО, показавшим реальность замедления времени для движущихся объектов, предсказываемого ТО, и соответственно, экспериментально продемонстрировавшим парадокс близнецов и гравитационное замедление времени. Прим. ред.]. Это был очень элегантный эксперимент, о котором я всегда рассказываю студентам на лекциях по теории относительности. В качестве системы отсчета исследователи использовали обычный пассажирский реактивный самолет. Их бюджет составлял всего $8000. Немного, причем он почти весь ушел на приобретение авиабилетов для путешествия вокруг Земли (включая отдельное место для специальных часов). Результаты были опубликованы в одном из престижнейших научных журналов Science.

Хафеле и Китинг использовали для эксперимента весьма необычные часы, которые все же смогли арендовать. При скорости самолета в 900 км/час безразмерная скорость b составляет 0,000000821. Чтобы получить фактор замедления времени, то есть гамма-фактор, можете подставить это число в приведенную выше формулу, но вам потребуется 15-значный калькулятор. (Excel не подойдет, но приложение к смартфону под названием Calculator сгодится.) Расположите смартфон горизонтально для работы в режиме научного вычислительного устройства. Вы обнаружите, что при таком путешествии на самолете вы живете дольше с гамма-фактором, равным 1,000000000000337. Настолько каждый ваш день становится длиннее. Дополнительная его часть (те самые 337) составляет 29 наносекунд (миллиардных долей секунды) в день.

Возможно, словосочетание «29 наносекунд» и не впечатляет, но за это время процессор в моем смартфоне может сделать 41 операцию (за этот период он совершает 41 рабочий цикл). Хафеле и Китинг смогли обнаружить явление замедления времени и доказать, что теория относительности позволила им получить его правильное значение. Конечно, еще до этого эксперимента физики много раз обнаруживали замедление времени при экспериментах со скоростями, близкими к скорости света, как, например, я делал это в своей лаборатории. Но было интересно пронаблюдать тот же эффект на нормальных для обычного самолета скоростях.

Эффект замедления времени становится значительно более заметным на спутниках GPS, которые имеют орбитальную скорость 14 000 км/час, что равно 3,8 км/с. Сделайте самостоятельные вычисления, и вы обнаружите, что в системе отсчета такого спутника замедление времени составит около 7200 наносекунд в день. GPS (система глобального позиционирования) должна учитывать это обстоятельство, поскольку на ее спутниках используются их собственные часы для определения своего местоположения. Радиоволны распространяются со скоростью примерно 30,5 см в наносекунду. Таким образом, если бы в системе GPS не учитывалось суточное замедление времени в 7200 наносекунд, то ошибка в определении вашего положения на Земле составила бы около 2,2 км.

Если бы Эйнштейн не открыл правильные уравнения для теории относительности в 1905 году[37 - Эйнштейн взял за основу хорошо известные преобразования Лоренца. Прим. науч. ред.], нас до сих пор приводила бы в замешательство долгая жизнь пионов или ошибки работы GPS в последней части XX века. Пришлось бы открывать явления замедления времени экспериментальным путем.

Летайте на самолетах или даже на космических кораблях – и будете жить дольше с точки зрения земной системы отсчета. Однако вы не почувствуете более долгую жизнь. Просто при вашем движении время бежит медленнее. Ваши часы будут идти медленнее, но так же медленнее будет биться ваше сердце, медленнее будете думать и стареть. Так что вы ничего не заметите. И это удивительное свойство релятивизма. Медленнее идут не только часы. Медленнее происходит все. Именно поэтому мы и говорим, что меняется скорость течения времени.

Правильные системы отсчета

Эйнштейн обнаружил: если вы ограничитесь только теми системами отсчета, которые движутся с постоянной скоростью, то уравнения в теории относительности останутся достаточно простыми. Я привожу их в Приложении 1 (#litres_trial_promo). Конечно, люди и мир не движутся с постоянными скоростями. Мы определяем вашу систему отсчета как систему, которая движется вместе с вами, изменяя скорость вместе с вами. Самое важное свойство этой системы в том, что она определяет ваш возраст и то количество времени, которое отпущено вам для жизни.

Когда вы сначала сидите на поверхности Земли, затем летите на самолете, а потом возвращаетесь, ваша собственная система отчета ускоряется. То количество времени, которое вы ощущаете и которое проявляется в вашем возрасте, проявится на ваших часах. Это не очевидно, но таким
Страница 9 из 13

представлением пользуются все физики. Научно оно называется хронометрической теорией. Если захотите узнать, как изменится ваш возраст во время длительного и сложного путешествия, в котором будет много ускорений, всегда высчитывайте свой гамма-фактор, который покажет, насколько замедляется ход ваших часов на каждой из тех скоростей, которым вы подвергаетесь.

Для ускоряющейся системы отсчета (например, для собственной СО) общие формулы для событий гораздо более сложные, чем для СО, движущихся с постоянной скоростью. Чтобы избежать этих сложностей, Эйнштейн использовал очень простой трюк. В любой момент ваша собственная система отсчета будет совпадать с СО, движущейся с постоянной скоростью. Поэтому достаточно делать ежемоментные вычисления именно в тех системах, которые соответствуют этому моменту. Иными словами, если вы ускоряетесь, используйте уравнения, представляя себе, что ваше движение оказывается «перепрыгиванием» вашей собственной СО из одной системы отсчета в другую, двигающуюся несколько быстрее. Этот подход Эйнштейн позднее использовал при вычислениях гравитации, которую он принимал за эквивалент ускоряющейся системы отсчета. Такой подход он назвал принципом эквивалентности сил гравитации и инерции.

Когда в этой книге я говорю «система отсчета», то имею в виду систему, не подверженную ускорению. Такие системы физики называют «системами отсчета Лоренца» – в честь Хендрика Лоренца[38 - Хендрик Лоренц (1853?1928) – нидерландский физик-теоретик, лауреат Нобелевской премии по физике (1902, совместно с П. Зееманом) и других наград, член Нидерландской королевской академии наук, ряда иностранных академий наук и научных обществ. Прим. ред.], современника Эйнштейна, который первым использовал концепцию неподвижных систем. Напротив, ваша собственная система отсчета движется вместе с вами, ускоряясь и останавливаясь, двигаясь пешком и бегом, меняя направление движения, запрыгивая в машины и носясь на них повсюду.

Путешествия в будущее

Эффект замедления времени порождает мысли о возможности путешествий в будущее. Действительно, попытайтесь добиться достаточно высокой скорости передвижения, и ваше собственное время потечет медленнее. За одну минуту вашей жизни можете прожить сотню лет в будущем. Не придется замораживать тело в надежде, что ученые однажды найдут способ разморозить и оживить его. Нужна всего лишь околосветовая скорость. Конечно, возникают и технические детали. Вам нужно позаботиться, чтобы во время путешествия ни с чем не столкнуться. На скоростях, близких к скорости света, это чревато. Важно побеспокоиться и о том, чтобы вернуться в ту же точку, откуда стартовали, чтобы Земля была такой, какой вы и ожидаете ее увидеть в будущем. И тут есть одна загвоздка. Попав в будущее, вы не будете обладать механизмом, который позволит вернуться в прошлое.

Путешествия во времени в обратном направлении, вероятно, возможны. Ученые полагают, что это могло бы произойти при путешествиях со скоростью выше скорости света, когда люди соскальзывали бы в пространственно-временные туннели в гипотетической модели Вселенной. Я позже порассуждаю об этих идеях, но мне кажется, на пути их реализации имеются серьезнейшие проблемы, и ни одна из них никогда не будет успешно реализована.

Эйнштейн вывел свои уравнения, допустив, что относительная скорость систем отсчета ниже скорости света. Если эти скорости сравняются, то гамма-фактор станет бесконечным и уравнения будут неверны. Можно ли использовать формулы для скоростей больше скорости света? Пока официально нет. Но, разумеется, каждый пытается посмотреть, что из этого получится. В конце концов при этом приходят к мыслям о воображаемой массе. Это необязательно противоречит физике. Мы поговорим об этом, когда будем рассматривать гипотетические частицы, имеющие скорость, которая превышает световую. Их называют тахионы.

Глава 3

Это скачущее сейчас

Изменение системы отсчета создает дискретные скачки в определении времени отдаленных событий

День и время, в которое мы живем,

Дает нам возможность понять скорость и новые открытия,

И даже четвертое измерение.

Нас немного пугает теория м-ра Эйнштейна…

Вы должны запомнить: поцелуй – всего лишь поцелуй,

Вздох – это всего лишь вздох.

С течением времени основополагающие вещи

Все равно остаются неизменными.

    Отрывок из песни «Время бежит вперед» (включая слова, пропущенные в фильме «Касабланка»[39 - Вольный перевод. «Касабланка» – голливудская романтическая кинодрама 1942 г., получила три «Оскара». Сюжет сосредоточен на внутреннем конфликте человека, которому приходится выбирать между долгом и чувством. Его часто называют в числе лучших фильмов Голливуда. Прим. перев.])

Даже если вас не пугает замедление времени, открытия Эйнштейна вокруг понятий когда и сейчас могут вызвать беспокойство. Термин квантовый скачок когда-то использовался только в квантовой физике. Само слово квант означает «дискретный, случайный, резкий». Согласно теории относительности, такие резкие изменения возникают в отношении отдаленных событий, когда вы круто меняете систему отсчета. Скачок во времени при этом может быть очень значительным.

Давайте дадим какому-то событию название (например, «моя новогодняя вечеринка») и определим его местоположение и время. Моя новогодняя вечеринка состоялась ночью 31 декабря 2015 года (или в какое-то другое время), а местом события был мой дом, местоположение которого определяется широтой, долготой и высотой относительно уровня моря. Время события отвечает на вопрос когда. Если два события имеют одно и то же когда, они называются одновременными. Например, ваша новогодняя вечеринка и такая же вечеринка у ваших друзей состоялись одновременно. (Вспомните цитату из статьи Эйнштейна, которая была приведена в начале предыдущей главы относительно часовой стрелки часов и прибытия поезда.) Достаточно просто. Но если два события происходят одновременно в одной системе отсчета, за которую можно взять мой дом, будут ли они обязательно одновременными в другой системе отсчета, скажем движущегося самолета? Очевидный ответ – да. Правильный ответ – нет.

Пока вы не стали изучать теорию и работы Эйнштейна, могло ли вам прийти в голову, что ответ может быть отрицательным? Подлинный гений ученого состоял в том, что он оказался способен задать себе такой вопрос. Без отказа от концепции классической физики об абсолютной одновременности событий Эйнштейн не смог бы решить проблему относительности.

В своей теории он показал, что если два события происходят в разных местах и одновременно, скажем прямо сейчас, то в другой системе отсчета они не будут одновременными. Одно событие происходит прежде, чем другое. Какое из них будет первым? Зависит от системы отсчета. Они могут и менять порядок происхождения. Именно это я имею в виду, говоря, что в теории относительности время может менять направление своего течения.

Предположим, вы летите к далекой звезде. Что происходит в это время на Земле? Скрытым и подразумеваемым, но не произнесенным в этом вопросе будет слово сейчас. Что происходит на Земле сейчас? Но стоит вам достичь звезды, остановиться на ней и изменить
Страница 10 из 13

собственную систему отчета из подвижной на неподвижную (на поверхности звезды), значение абсолютного сейчас в этой системе отсчета тоже изменится. Это произойдет в силу того, что ваша собственная система отсчета после остановки привязывается к другой СО. Когда ваша система отсчета «перепрыгивает» в другую, то же самое происходит и со временем отдаленных событий. Формула для этого «прыжка» времени оказывается очень простой. Это ?Dv/с2, где ? – гамма-фактор, D – расстояние до события, v – изменение скорости, а с – скорость света. Я даю эту формулу в Приложении 1 (#litres_trial_promo).

Приведу пример. Предположим, что ваша новогодняя вечеринка происходит у вас дома, а моя – на Луне. Эти события одновременны в собственной системе отсчета моего дома. А теперь давайте посмотрим на те же самые события в собственной системе отсчета пиона из моей лаборатории. Расстояние D/c составляет 1,3 светосекунды[40 - Светосекунда (по аналогии со световым годом) – расстояние, которое свет преодолевает за 1 секунду. Прим. науч. ред.], скорость движения пиона в моей лаборатории (соотношение v/c, безразмерная скорость b) близка к 1, а гамма-фактор составляет число I, вычисленное ранее: 637. Таким образом, «прыжок» времени будет произведением 1,3 ? 637, что составляет 828 секунд. Это разрыв в 14 минут между двумя «одновременными» новогодними вечеринками! Какое же событие произойдет первым, зависит от того, движется система отсчета пиона в сторону Луны или удаляется от нее.

Не находите ли вы этот пример более волнующим, чем абстрактная «более долгая жизнь»? Большинство людей согласны с этим, потому что он ближе к реальности. В силу своей труднодоступности для понимания эти «прыжки», или разрывы во времени событий, оказываются одними из самых запутанных парадоксов теории относительности, и мы поговорим о них в следующей главе. Они также несут в себе важные последствия для наших поисков понимания категории сейчас.

Еще раз предупреждаю: остерегайтесь понимать разрывы во времени событий как «несогласие между наблюдателями», что часто используется в популярных объяснениях теории относительности как штамп. Наблюдатели со своими системами отсчета не могут иметь «различное представление» о реальности, в чем хотят убедить вас некоторые авторы. Это вывод базируется на том неправильном представлении, что любой наблюдатель может описывать реальность только в одной системе отсчета – его собственной. Если бы это было так, то в нашей обычной жизни я сказал бы, что не я приехал в Париж, а Париж приехал ко мне. Мы не строго привязаны к собственным системам отсчета в обычной жизни, поэтому нет никакого резона привязывать себя к ним, говоря о релятивизме.

Сжимающееся пространство, плоские протоны

Эйнштейн изменил и наше понимание времени, и наше понимание пространства. В теории относительности он показал, что не только время прохождения двух событий зависит от системы отсчета (Земля, самолет или спутник), но и длина объектов.

Начиная разговор о длине, мы вновь должны обратиться в детство. Чтобы измерить длину автобуса, мы определяем местоположение одного его конца, затем другого и выводим разницу между ними. Но предположим, что автобус двигается. Мы отмечаем нахождение переда автобуса, когда эта его часть минует нас, а буквально через секунду отмечаем, что мимо нас проезжает его задняя часть. И мы ошибочно приходим к заключению о том, что длина автобуса равна 0. Ясно, что мы допускаем ошибку. Нужно измерить переднюю и заднюю точки автобуса одновременно.

Одновременно? Но в этом-то и загвоздка. Одновременность относительна. События, одновременные в одной системе отсчета, не одновременны в другой. Прямым следствием этого будет то обстоятельство, что в разных системах отсчета длина будет разной. Если объект имеет длину L в собственной системе отсчета (двигаясь вместе с ней), тогда его длина в системе отсчета, двигающейся с относительной скоростью v (например, земной СО), будет, по Эйнштейну, меньше на гамма-фактор. Для интересующихся я привожу это уравнение в Приложении 1 (#litres_trial_promo).

Это сокращение длины объекта называлось в разное время по-разному: сжатие Фицджеральда, сжатие Лоренца[41 - Можно встретить также термины Лоренцово сокращение или Фицджеральдово сокращение. Прим. науч. ред.], сжатие движущегося тела в направлении движения.

Множественность названий отражает тот факт, что само явление было постулировано еще до Эйнштейна. Ирландский физик Джордж Фицджеральд, вместе с другими учеными своей эпохи (конец XIX века), предполагал, что все пространство заполнено невидимой жидкостью под названием эфир. (В молодости я путал его с химическим эфиром.) Этот эфир, по представлениям Фицджеральда, был той средой, в которой распространялись электромагнитные колебания: световые и радиоволны. Теперь под этим мы понимаем вакуум, или космическое пространство. Фицджеральд выдвинул гипотезу о том, что объект, движущийся сквозь эфир, будет сжиматься под действием сопротивления этой субстанции. Эту силу сопротивления он называл «эфирным ветром». Новая длина предмета была результатом деления старой его длины (которая существовала в его собственной системе отсчета) на гамма-фактор.

В понимании сжатия движущегося тела много путаницы из-за неточности языка некоторых ученых. Они говорят, что движущийся деревянный метр «кажется короче». Это правда, но не вся. Он короче в нашей системе отсчета, чем в собственной СО. Все наблюдатели, независимо от скорости их движения, сходятся в этом. Деревянный метр кажется короче, потому что он на самом деле короче.

Сжатие движущегося тела я тоже мог наблюдать в своей лаборатории, хотя и не с такой ясностью, как замедление времени. Когда мы сталкиваем пион с протоном, в системе отсчета пиона протон становится совсем не круглым. Он приобретает форму очень тонкого блина толщиной в 1/637 части своего диаметра, то есть больше похожим на тонкую ткань (типа крепа). Это изменение формы протона оказывает серьезное воздействие на рассеивание пиона, которое я наблюдал.

В земной системе отсчета пион был меньшей из двух частиц. Так какая же из них была меньше в реальности, пион или протон? Ответ – обе, в зависимости от системы отсчета. В собственной СО пиона двигался протон, и он был меньше. В собственной СО протона двигался пион, и меньше был он. Все наблюдатели во всех системах отсчета сходятся в этом. В теории относительности наблюдатели никогда не расходятся в определении длины объекта больше, чем в определении его скорости. Скорость относительна. Точно так же относительны временные интервалы. Точно так же относительна форма.

Эксперимент Майкельсона?Морли

Большинство известных дискуссий о теории относительности начинается с описания эксперимента, проведенного американскими физиками Альбертом Майкельсоном[42 - Альберт Майкельсон (1852?1931) – американский физик, известен изобретением названного его именем интерферометра Майкельсона и прецизионными измерениями скорости света. Лауреат Нобелевской премии по физике «за создание точных оптических инструментов и спектроскопических и метрологических исследований, выполненных с их помощью» (1907). Прим. ред.] и Эдвардом Морли[43 - Эдвард Морли (1838?1923) – американский физик и химик.
Страница 11 из 13

Наибольшую известность получили работы в области интерферометрии, выполненные совместно с А. Майкельсоном. В химии высшим достижением Морли было точное сравнение атомных масс элементов с массой атома водорода, за которое ученый был удостоен наград нескольких научных обществ. Прим. ред.] в 1887 году. До сих пор неясно, в какой степени результаты этого эксперимента повлияли на Альберта Эйнштейна. Он упоминает о нем лишь в своих поздних работах. Создается впечатление, что его теория относительности базировалась прежде всего на теории электромагнетизма Максвелла и свойствах этой теории, выведенных Лоренцем.

Майкельсон и Морли сделали исключительно точное измерение скорости света в направлении движения Земли вокруг Солнца и перпендикулярном ему направлении. Цель состояла в обнаружении «эфирного ветра». Ученые выяснили, что скорость распространения света в обоих направлениях была одинаковой, несмотря на движение Земли. Они нашли лишь 1/40-ю долю той разницы в скорости света, которую ожидали увидеть. То есть, по существу, никакой разницы.

Современные эксперименты подтвердили, что скорость света постоянна, независимо от направления вращения Земли. При этом точность измерений достигла 0,01 микрона в секунду. В действительности точность измерений была настолько высока, что ее дальнейшее повышение потребовало бы внесения изменений в определение того, что мы подразумеваем под одним метром в метрической системе. Чтобы избежать каких-либо противоречий, в настоящее время скорость света официально определена в 299 792 458 м/с, а длина метра определяется как расстояние, которое луч света преодолевает за 1/299 792 458 секунды. Это означает, что известное значение скорости света больше не уточняется. Можно только технически повысить точность измерения длины метра. Полезно также запомнить, что свет распространяется со скоростью около 0,3048 м/нс (нс, наносекунда – одна миллиардная доля секунды) с точностью до 1,5 %.

Постоянство скорости света достаточно легко объясняется теорией относительности, как я показываю в Приложении 1 (#litres_trial_promo). Но это обстоятельство можно повернуть на 180°. В начальных курсах физики преподаватели иногда выводят уравнения теории относительности, начав с тезиса о постоянстве скорости света и показывая потом, что релятивистские уравнения – единственные, которые линейны по отношению ко времени и пространству и которые могут дать этот результат. Студентом я никогда не любил этот метод, потому что считал представление о линейности искусственным. На самом деле это не так, но мне, второкурснику, было трудно принять принцип «линейности», так что все вычисления казались натянутыми.

E = mc?

Самой известной формулой XX века считается формула Эйнштейна об эквивалентности массы и энергии: E = mc?. В настоящее время она настолько известна, что трудно даже представить, насколько абсурдной она казалась, когда была впервые сформулирована Эйнштейном. Он опубликовал ее во второй статье, посвященной теории относительности, в 1905 году, через три месяца после первой.

Формула выглядела нелепой. В соответствии с ней любая масса, даже такая, которой обладают абсолютно несжигаемые субстанции типа камня или воды, содержит в себе огромную энергию. После подстановки в формулу показателя с? получались чудовищные значения. Скорость света, с, – это 300 000 000 м/с. Возведите это число в квадрат, и вы получите 90 000 миллионов миллионов. Другими словами, 90 квадриллионов. К тому же Эйнштейн не дал никаких указаний относительно того, как можно извлечь всю эту энергию для полезного использования. Он просто констатировал, что она есть. Если вы не могли освободиться от массы, такая энергия была бесполезна. В то время понятие массы считалось непреложным. Масса «сохранялась», она не могла быть создана или уничтожена. Таким образом, формула Эйнштейна выглядела одновременно и абсурдной, и бессмысленной.

Ученый говорил, что, в принципе, энергия эквивалентна массе. Вы можете представить себе массу как «связанную в узел энергию». Когда, сжигая бензин и воздух, вы получаете тепло, масса дымов (состоящих в основном из углекислого газа и пара) будет несколько меньше массы сожженной бензиново-воздушной смеси из-за истраченной энергии (той энергии, которая использована на придание движения вашему автомобилю). Энергия, помимо прочего, уходит на разогрев воздуха и покрытия дороги (сила трения), в результате чего они станут несколько тяжелее, потому что «впитают» в себя энергию.

Формула E = mc? подразумевает использование физических единиц (джоулей, килограммов, метров в секунду). Я попробую переписать ее в наших повседневных единицах измерения. Килограмм массы – это примерно 2,2 фунта. 1 киловатт-час энергии (кВт/ч) эквивалентен 3,6 млн джоулей. Формулу Эйнштейна можно представить еще и так:

Энергия = mc? = 11 млрд кВт/ч в фунте массы.

В США средняя стоимость электроэнергии равна 10 центам за 1 киловатт-час. Так что один фунт любой массы, переведенный в электрическую энергию, стоил бы более миллиарда долларов.

Другой способ представить эту формулу – измерить энергию в бензиновом эквиваленте. Сколько ее будет содержаться в массе одного галлона бензина (3,79 л). Вот как будет выглядеть формула:

Энергия = mc? = 2 млрд галлонов (в бензиновом эквиваленте) в одном галлоне бензина.

Это означает, что энергии в массе бензина содержится в 2 миллиарда раз больше, чем получается от сжигания той же массы. В США розничная цена бензина колеблется, но если, для примера, ее взять равной $3 за галлон, то в одном галлоне бензина содержится энергии на $6 млрд. А в Европе – на еще большую сумму.

Требовалось ли от Эйнштейна мужество, чтобы в начале XX века опубликовать подобные, явно нелепые, выводы? Сегодня, когда мы знакомы с мирной ядерной энергией и чудовищной разрушительной силой атомных бомб, эти заключения и расчеты не кажутся фантастическими. Но в начале 1900-х годов доказательств существования этих невероятных масс энергии еще не было – кроме того, что в процессе радиоактивного распада атом высвобождал энергию в миллион раз больше, чем при участии в химической реакции. Должен был существовать доселе неизвестный источник гигантской энергии, и Эйнштейн нашел его – это масса. Но утверждения великого ученого требовали либо отчаянной смелости, либо уверенности в том, что он раскрыл фундаментальную правду о массе. Создается впечатление, что превалировал второй фактор.

Каким образом Эйнштейн вывел уравнения об энергии из уравнений времени и пространства? Его метод был достаточно простым. Он задумался: какое влияние окажут наши представления о времени и пространстве на законы механики? Ньютон в свое время решил, что объект, испытывающий на себе силу F, приобретет ускорение а по формуле F = ma. Мы называем это вторым законом Ньютона. (Его первый закон, гласящий, что движущийся объект будет сохранять свое прямолинейное движение или останется в состоянии покоя, есть лишь частный случай для второго закона, при силе F, равной нулю.)

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (http://www.litres.ru/pages/biblio_book/?art=23789074&lfrom=931425718) на ЛитРес.

Безопасно оплатить книгу можно
Страница 12 из 13

банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

notes

Сноски

1

Артур Эддингтон (1882?1944) – английский астрофизик. В разные годы – директор астрономической обсерватории в Кембридже, президент Королевского астрономического общества, президент Лондонского общества физиков. С 1920-х гг. сосредоточился на «фундаментальной теории», предполагающей объединение квантовой теории, теории относительности, космологии и гравитации. Прим. ред.

2

Энтропия – мера неупорядоченности системы. Прим. науч. ред.

3

Квантовая запутанность – ситуация, при которой квантовые характеристики двух или более частиц оказываются связаны. Прим. ред.

4

Физикализм – концепция логического позитивизма, разрабатываемая Карнапом, Нейратом и др. Сторонники физикализма считают критерием научности какого-либо положения из любой дисциплины возможность перевести его на язык физики. Положения, не поддающиеся такой операции, рассматриваются как лишенные научного смысла. Прим. перев.

5

Темная энергия в космологии – вид энергии, введенный в математическую модель Вселенной ради объяснения ее наблюдаемого расширения с ускорением. Прим. ред.

6

Инфляционная модель Вселенной – гипотеза о физическом состоянии и законе расширения Вселенной на ранней стадии Большого взрыва (при температуре выше 1028 K), предполагающая период ускоренного расширения по сравнению со стандартной моделью горячей Вселенной. Прим. ред.

7

Вращение плоскости поляризации света наблюдается при распространении линейно поляризованного света через оптически неактивное вещество, находящееся в магнитном поле (продольный магнитооптический эффект Фарадея). Прим. ред.

8

«Темный город» – драма, США, 1998 г. Убийцу, не помнящего имени и прошлого, преследует полицейский Фрэнк Бастед. Его ищут жена, чужаки, а он пытается разобраться в происходящем. Прим. ред.

9

«Клик: с пультом по жизни» – комедийная драма, США, 2006 г. Архитектору попадает в руки пульт ДУ, с помощью которого можно прокручивать жизнь вперед или назад. Но однажды пульт начинает управлять скоростью и выбором момента жизни. Герой понимает, как неверно использовал время. Прим. ред.

10

«Интерстеллар» – научно-фантастический фильм, США, 2014 г. Засуха приводит к продовольственному кризису; группа исследователей отправляется сквозь червоточину пространства-времени, чтобы узнать, как переселить человечество на другую планету. Прим. ред.

11

«Лара Крофт: расхитительница гробниц» – фильм, США, 2001 г. Экранизация серии компьютерных игр Tomb Raider, посвященных археологу и искательнице приключений Ларе Крофт. Прим. ред.

12

«Останавливающие время» – фантастический фильм, США, 2002 г. Молодой человек находит часы, которые дают возможность повысить скорость восприятия мира в 25 раз. С этим и связаны приключения. Прим. ред.

13

Парадокс близнецов (парадокс Ланжевена, парадокс часов) – первый и наиболее известный парадокс специальной теории относительности, основанный на тезисе, сформулированном Эйнштейном в работе «К электродинамике движущихся тел». Статус «парадокс» появился позднее. Прим. ред.

14

Аристотель. Физика. М.: КомКнига, 2016. Прим. ред.

15

Aristotle, Physics, trans. R. P. Hardie and R. K. Gaye, Internet Classics Archive.

16

Аврелий Августин (354?430) – христианский богослов и философ, влиятельнейший проповедник, епископ Гиппонский, один из отцов христианской церкви. Прим. перев.

17

Блаженный Августин. Исповедь. СПб.: Благовест, 2014. Прим. ред.

18

Диккенс, Ч. Рождественская песнь в прозе. М.: Клевер-Медиа-Групп, 2016. Прим. ред.

19

Рудольф Карнап (1891?1970) – немецко-американский философ и логик, ведущий представитель логического позитивизма и философии науки. Прим. перев.

20

Хроногеометрия – коротко говоря, теория пространства и времени. Прим. ред.

21

Издана на русском языке: Грин Б. Ткань космоса: Пространство, время и текстура реальности. М.: Либроком, 2009. Прим. перев.

22

Эддингтон считал, что постепенное рассеивание энергии доказывает необратимость стрелы времени, летящей в одном направлении. Но это понятие не соответствует основным законам физики, которые во времени действуют как в прямом направлении, так и в противоположном. Согласно им, если обратить пути всех частиц во Вселенной вспять, энергия стала бы накапливаться, а не рассеиваться: холодный кофе начал бы нагреваться, здания поднялись бы из руин, а солнечный свет вернулся к Солнцу. Прим. ред.

23

Издана на русском языке: Хокинг С. Краткая история времени. СПб.: Амфора, 2015. Прим. ред.

24

Стивен Хокинг – английский физик-теоретик и популяризатор науки, профессор математики. Изучал теорию возникновения мира в результате Большого взрыва, а также теорию черных дыр. Прим. перев.

25

GPS (Global Positioning System – система глобального позиционирования) – спутниковая система навигации, обеспечивающая измерение расстояния, времени и определяющая местоположение во всемирной системе координат WGS 84. Прим. ред.

26

Горизонт событий – воображаемая граница в пространстве-времени, разделяющая те события (точки пространства-времени), которые можно соединить с событиями на светоподобной бесконечности светоподобными траекториями световых лучей, и те события, которые так соединить нельзя. Так как светоподобных бесконечностей у пространства-времени две: относящаяся к прошлому и будущему, – то и горизонтов событий может быть два: прошлого и будущего. Горизонт событий прошлого разделяет события на изменяемые с бесконечности и на неизменяемые; а горизонт событий будущего отделяет события, о которых можно что-либо узнать, хотя бы в бесконечно отдаленной перспективе, от событий, о которых узнать ничего нельзя. Прим. перев.

27

Теория измерений предполагается как теория о классификации переменных величин по природе информации, которая содержится в числах – значениях этих переменных величин. Прим. ред.

28

Иррациональность числа подразумевает, что его нельзя представить в виде дроби, числитель и знаменатель которой – целые числа. Прим. науч. ред.

29

Ричард Фейнман (1918?1988) – американский физик-теоретик. Один из создателей квантовой электродинамики. Входил в число создателей атомной бомбы. Разработал метод интегрирования по траекториям в квантовой механике (1948), а также так называемый метод диаграмм Фейнмана (1949) в квантовой теории поля, с помощью которого можно объяснять превращения элементарных частиц. Лауреат Нобелевской премии по физике (1965). Прим. ред.

30

Позитрон – античастица электрона, имеющая такую же массу, как и электрон, но положительный заряд. Прим. науч. ред.

31

Annalen der Physik («Анналы физики») – немецкий научный журнал, посвященный проблемам физики. Один из старейших, издается с 1799 года. Публикует оригинальные статьи в области экспериментальной, теоретической, прикладной и математической физики, а также смежных областей. Прим. ред.

32

Ньютон И. Математические начала натуральной философии. М.: ЛКИ, 2014. Прим. ред.

33

Ее еще называют частной теорией относительности.
Страница 13 из 13

Прим. науч. ред.

34

Тритий – изотоп атома водорода с двумя нейтронами и одним протоном в составе ядра. Прим. науч. ред.

35

Известному также как Лоренц-фактор. Прим. науч. ред.

36

В 1971 г. Дж. Хафеле и Р. Китинг дважды облетели вокруг света, сначала на восток, затем на запад, с 4 комплектами цезиевых атомных часов, после чего сравнили «путешествовавшие» часы с часами, остававшимися в Военно-морской обсерватории США. Эксперимент стал одним из тестов ТО, показавшим реальность замедления времени для движущихся объектов, предсказываемого ТО, и соответственно, экспериментально продемонстрировавшим парадокс близнецов и гравитационное замедление времени. Прим. ред.

37

Эйнштейн взял за основу хорошо известные преобразования Лоренца. Прим. науч. ред.

38

Хендрик Лоренц (1853?1928) – нидерландский физик-теоретик, лауреат Нобелевской премии по физике (1902, совместно с П. Зееманом) и других наград, член Нидерландской королевской академии наук, ряда иностранных академий наук и научных обществ. Прим. ред.

39

Вольный перевод. «Касабланка» – голливудская романтическая кинодрама 1942 г., получила три «Оскара». Сюжет сосредоточен на внутреннем конфликте человека, которому приходится выбирать между долгом и чувством. Его часто называют в числе лучших фильмов Голливуда. Прим. перев.

40

Светосекунда (по аналогии со световым годом) – расстояние, которое свет преодолевает за 1 секунду. Прим. науч. ред.

41

Можно встретить также термины Лоренцово сокращение или Фицджеральдово сокращение. Прим. науч. ред.

42

Альберт Майкельсон (1852?1931) – американский физик, известен изобретением названного его именем интерферометра Майкельсона и прецизионными измерениями скорости света. Лауреат Нобелевской премии по физике «за создание точных оптических инструментов и спектроскопических и метрологических исследований, выполненных с их помощью» (1907). Прим. ред.

43

Эдвард Морли (1838?1923) – американский физик и химик. Наибольшую известность получили работы в области интерферометрии, выполненные совместно с А. Майкельсоном. В химии высшим достижением Морли было точное сравнение атомных масс элементов с массой атома водорода, за которое ученый был удостоен наград нескольких научных обществ. Прим. ред.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Здесь представлен ознакомительный фрагмент книги.

Для бесплатного чтения открыта только часть текста (ограничение правообладателя). Если книга вам понравилась, полный текст можно получить на сайте нашего партнера.

Adblock
detector