Режим чтения
Скачать книгу

Симпсоны и их математические секреты читать онлайн - Саймон Сингх

Симпсоны и их математические секреты

Саймон Сингх

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа ? и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.

Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.

На русском языке публикуется впервые.

Саймон Сингх

Симпсоны и их математические секреты

Simon Singh

THE SIMPSONS

AND THEIR

MATHEMATICAL SECRETS

Научный редактор Александр Минько

Издано с разрешения Conville & Walsh Ltd. и литературного агентства Synopsis

Правовую поддержку издательства обеспечивает юридическая фирма «Вегас-Лекс».

© Simon Singh, 2013

© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2016

* * *

Аните и Хари

? + ? = ?

Глава 0

Вся правда о Симпсонах

«Симпсоны», пожалуй, самое успешное телевизионное шоу за всю историю. Как и следовало ожидать, его всемирная популярность и неизменная притягательность побудили ученых (которым свойственно чрезмерно все анализировать) заняться поиском подтекста мультсериала и задать в связи с этим ряд глубоких вопросов. В чем скрытый смысл высказываний Гомера о пончиках и пиве Duff? Символизируют ли ссоры между Бартом и Лизой нечто большее, чем просто перебранки между братом и сестрой? Используют ли авторы «Симпсонов» обитателей Спрингфилда для изучения политических или социальных противоречий?

Одна группа интеллектуалов написала книгу, в которой утверждает, что мультсериал «Симпсоны», по сути, предлагает вниманию зрителей еженедельную лекцию по философии. Авторы книги The Simpsons and Philosophy[1 - Халвани Р., Скобл Э. «Симпсоны» как философия. М.: У-Фактория, 2005.] указывают на наличие явной связи между различными эпизодами сериала и вопросами, поднятыми в свое время такими величайшими мыслителями, как Аристотель, Сартр и Кант. В книге есть главы «Моральная мотивация Мардж», «Нравственный мир семьи Симпсонов в свете учения Канта» и «Так говорит Барт: Ницше и добродетели порока».

В свою очередь в книге The Psychology of The Simpsons («Психология «Симпсонов»») говорится, что самое знаменитое семейство Спрингфилда помогает нам глубже понять человеческий разум. В этом сборнике эссе примеры из различных эпизодов сериала используются для изучения таких вопросов, как алкогольная и наркотическая зависимость, лоботомия и эволюционная психология.

Напротив, Марк Пински в своей книге The Gospel According to The Simpsons («Евангелие от Симпсонов») оставляет в стороне вопросы философии и психологии и фокусируется на духовной значимости «Симпсонов», что несколько неожиданно, потому что многие герои мультсериала настроены критически по отношению к религиозным догматам. Постоянные зрители «Симпсонов» знают, что Гомер неизменно сопротивляется вынужденной необходимости ходить в церковь каждое воскресенье, как показано в эпизоде «Еретик Гомер» (Homer the Heretic, сезон 4, эпизод 3; 1992 год): «Зачем нужно ходить в один и тот же дом каждое воскресенье, ведь Бог повсюду?.. А что если мы выбрали не ту религию? Тогда каждую неделю мы гневим Бога еще больше». Тем не менее Пински утверждает, что приключения Симпсонов зачастую иллюстрируют важность христианских ценностей. Причем многие священники разделяют эту точку зрения и даже читали проповеди, посвященные моральным дилеммам, которые встают перед членами семьи Симпсонов.

Даже президент Джордж Буш-старший заявил, что раскрыл истинный смысл «Симпсонов». Он считал, что цель мультсериала – показать самые худшие социальные ценности. В 1992 году, выступая на национальном съезде Республиканской партии, Буш произнес фразу, ставшую ключевым элементом его предвыборной кампании: «Мы стремимся укреплять институт американской семьи, чтобы это были все же семьи Уолтонов, а не Симпсонов».

Через несколько дней последовала реакция авторов сериала. Следующий эпизод вышел в эфир как повтор серии «Совершенно безумный папа» (Stark Raving Dad, сезон 3, эпизод 1; 1991 год), но с одним отличием – дополнительной сценой в начале, в которой Симпсоны смотрят выступление президента Буша. Гомер так поражен, что даже не может говорить, а Барт бросает президенту вызов: «Эй, мы точно такие же, как Уолтоны. Мы тоже молимся о конце Депрессии».

Однако все эти философы, психологи, теологи и политики упустили основной подтекст самого культового мультсериала. Дело в том, что многие сценаристы «Симпсонов» увлекаются числами, и их сокровенное желание – по каплям внедрять математику в подсознание зрителей. Другими словами, на протяжении более чем двух десятков лет нас хитростью заставляют смотреть анимированное введение в абсолютно разные области математики, от математического анализа до геометрии, от числа ? до теории игр, от бесконечно малых до бесконечно больших величин.

Присутствующий в «Симпсонах» уровень математики иллюстрирует третья часть эпизода «Маленький домик ужасов на дереве 6» (Treehouse of Horror VI, сезон 7, эпизод 6; 1995 год) под названием «Трехмерный Гомер». В одном только этом фрагменте упоминается самое элегантное математическое уравнение, а также приведена шутка, которую поймет лишь тот, кто знает о последней теореме Ферма, и задача на миллион долларов. И все это включено в историю, в которой исследуются сложные аспекты многомерной геометрии.

Сценарий фрагмента «Трехмерный Гомер» написал Дэвид Коэн, обладатель степени бакалавра по физике и степени магистра компьютерных наук. Это весьма серьезный уровень образования, особенно для работника телеиндустрии, однако многие коллеги Коэна из команды сценаристов мультсериала имеют не менее выдающиеся познания в области математических дисциплин. На самом деле некоторые из них даже доктора наук и занимали должности старших научных сотрудников в университетах и промышленных компаниях. Мы еще встретимся с Коэном и его коллегами в этой книге, а пока ознакомьтесь со списком степеней пяти авторов сериала «Симпсоны», к которым больше всего применимо определение «нерд»:

Дж. Стюарт Бернс – бакалавр математики, Гарвардский университет; магистр математики, Калифорнийский университет в Беркли.

Дэвид Коэн – бакалавр физики, Гарвардский университет; магистр компьютерных наук, Калифорнийский университет в Беркли.

Эл Джин – бакалавр математики, Гарвардский университет.

Кен Килер – бакалавр прикладной математики, Гарвардский университет; доктор прикладной математики, Гарвардский университет.

Джефф Уэстбрук – бакалавр физики, Гарвардский университет; магистр компьютерных наук, Принстонский университет.

В 1999 году некоторые из этих сценаристов участвовали в создании родственного мультсериала под названием «Футурама», в котором действие происходит через тысячу лет. Неудивительно, что фантастический сценарий позволил им еще глубже исследовать ряд математических тем, поэтому последние главы книги посвящены математике «Футурамы». К числу таких тем относится поистине новаторская и уникальная теорема, выведенная исключительно в целях комедийного сюжета.

Прежде чем отправиться в путь
Страница 2 из 7

к головокружительным высотам, я попытаюсь доказать, что нерды[2 - В 1951 году в журнале Newsweek было напечатано, что «нерд» (nerd) – это пренебрежительное слово, получающее все большую популярность в Детройте. В 60-х годах ХХ столетия студенты Политехнического института Ренсселера отдавали предпочтение написанию knurd (drunk наоборот), подчеркивая тем самым, что они представляют собой полную противоположность любителей вечеринок. Однако за последнее десятилетие принадлежность к племени нердов стала престижной, и этот термин получил распространение в среде математиков и им подобных.] и гики[3 - Гик (англ. geek) – шутливое и несколько пренебрежительное прозвище «зубрил», помешанных на учебе, особенно тех, кого ничего кроме компьютеров не интересует. Прим. ред.] сделали «Футураму» потрясающим телевизионным инструментом распространения знаний о математике в массовой культуре. В этом мультсериале упоминаются многие теоремы и гипотезы, а уравнения встречаются почти во всех эпизодах. Однако я не буду здесь описывать каждый экспонат Симпсоновского музея математики, поскольку это означало бы необходимость включить в книгу более сотни отдельных примеров, а вместо этого сфокусируюсь в каждой главе на небольшом количестве разнообразных идей, от величайших открытий за всю историю математики до самых трудных, так до сих пор и не решенных, задач. В каждом из этих случаев вы увидите, как авторы мультсериала использовали персонажей для изучения мира цифр.

Гомер познакомит нас с теоремой Страшилы, надев очки Генри Киссинджера; Лиза покажет, что анализ статистических данных помогает бейсбольным командам добиться победы; профессор Фринк объяснит умопомрачительные следствия его «фринкаэдра», а остальные обитатели Спрингфилда расскажут о самых разных вещах, от простых чисел Мерсенна до гуголплекса.

Добро пожаловать в мир книги «Симпсоны и их математические секреты»!

Будьте там – или вы не с нами[4 - В английском языке есть выражение Be there or be square (дословно: «Будь там – или будешь квадратом»), которое означает: «Будь там – или ты не с нами». Квадрат как фигура, символизирующая порядок, означает также нечто сдерживающее, консервативное. Следовательно, если ты «квадрат», значит, ты консервативен и не интересуешься ничем новым. Автор книги перефразировал это выражение так: Be there or be regular quadrilateral, что дословно переводится как «Будь там – или будешь правильным многоугольником». Прим. пер.].

Глава 1

Барт – гений

В 1985 году культового художника-мультипликатора Мэтта Грейнинга пригласили на встречу с Джеймсом Бруксом, легендарным режиссером, продюсером и сценаристом, приложившим руку к созданию таких классических телесериалов, как «Шоу Мэри Тайлер Мур», «Лу Грант» и «Такси». За пару лет до этого Джеймс Брукс получил три «Оскара» как продюсер, режиссер и сценарист художественного фильма Terms of Endearment («Язык нежности»).

Брукс хотел обсудить с Грейнингом его участие в создании «Шоу Трейси Ульман», оказавшегося впоследствии одним из первых весьма удачных проектов недавно сформированной телевизионной сети Fox. Каждый эпизод шоу представлял собой серию комедийных скетчей с участием британской певицы Трейси Ульман, и продюсерам нужны были короткометражные анимационные фильмы, которые бы связывали эти скетчи между собой. Сначала они выбрали для таких заставок анимационную версию комикса Грейнинга Life in Hell («Жизнь в аду»), главным героем которого был депрессивный кролик Бинки.

Сидя в приемной в ожидании встречи с Бруксом, Грейнинг размышлял над предложением, которое вот-вот должен был получить. Безусловно, это стало бы для него звездным часом, но интуиция подсказывала Грейнингу, что предложение следует отклонить, поскольку комикс «Жизнь в аду» в свое время дал старт его карьере и помог пережить трудные времена. Грейнингу казалось, что продавать Бинки телекомпании Fox – предательство по отношению к кролику. Но с другой стороны, ему выпадал такой огромной шанс, как же он мог его упустить? И тут, прямо под дверью кабинета Брукса, Грейнинга осенило: единственный способ разрешить дилемму – создать новых персонажей вместо Бинки. Легенда гласит, что он придумал всю концепцию «Симпсонов» за считанные минуты.

Бруксу понравилась идея, и Грейнинг приступил к делу, создав десятки короткометражных мультфильмов длительностью одна-две минуты с участием членов семьи Симпсонов. Эти короткометражки были разбросаны по всем трем сезонам «Шоу Трейси Ульман». Такие эпизодические вкрапления в шоу могли означать как начало, так и конец «Симпсонов», однако съемочная группа стала замечать нечто странное.

Трейси Ульман для создания своих персонажей часто использовала необычный грим и макияж. Но при этом возникали определенные проблемы, ведь эпизоды шоу снимались перед живой аудиторией. Чтобы как-то развлечь публику, пока Ульман готовилась к следующей сцене, кто-то предложил объединять по несколько эпизодов с участием Симпсонов и показывать их в это время. А поскольку короткометражки уже транслировались, это была всего лишь обновленная подача старого материала. Однако ко всеобщему удивлению, мультфильмы нравились зрителям не меньше, чем сами скетчи.

Грейнинг и Брукс задались вопросом, а не сделать ли похождения Гомера, Мардж и их отпрысков темой полнометражного мультфильма, и вскоре вместе со сценаристом Сэмом Саймоном приступили к работе над специальным рождественским выпуском. Интуиция их не подвела. Эпизод под названием «Симпсоны готовят на открытом огне» (Simpsons Roasting on an Open Fire) вышел в эфир 17 декабря 1989 года и имел огромный успех как среди зрителей, так и среди критиков.

Через месяц после показа специального выпуска вышел эпизод «Барт – гений» (Bart the Genius, сезон 1, эпизод 2; 1990 год). Это был первый настоящий эпизод «Симпсонов», поскольку именно он положил начало знаменитому сериалу и именно в нем впервые прозвучала печально известная фраза Барта «Съешь мои шорты». Но самое примечательное, что эпизод «Барт – гений» содержал значительную дозу математики и во многих отношениях задал тон мультсериалу на два ближайших десятилетия. А так как в «Симпсонах» часто упоминаются числа и делаются ссылки на геометрию, сериал занял особое место в сердцах математиков.

Оглядываясь назад, можно сказать, что математическая подоплека «Симпсонов» была очевидной с самого начала. В первой же сцене эпизода «Барт – гений», в которой Мэгги строит башню из кубиков с буквами, зрители бегло знакомятся с самым знаменитым уравнением за всю историю науки. Водрузив шестой кубик на верхушку башни, Мэгги смотрит на столбик из шести букв. Навсегда обреченная оставаться годовалым ребенком, Мэгги чешет голову, сосет пустышку и восхищается своим творением: EMCSQU. Будучи неспособной поставить знак равенства и не имея кубиков с цифрами, Мэгги тем не менее фактически представляет знаменитую формулу Эйнштейна E = mc?.

Кто-то может заявить, что математика, используемая ради славы науки, в каком-то смысле второсортна, однако по мере развития сюжета эпизода «Барт – гений» этих пуристов ждут и другие сюрпризы.

Пока Мэгги строит формулу E = mc? из кубиков,
Страница 3 из 7

Гомер, Мардж и Лиза играют с Бартом в скребл. Барт торжествующе расставляет на доске буквы KWYJIBO. Такого слова нет в словаре, поэтому Гомер ставит под сомнение победу Барта, но тот в отместку определяет kwyjibo так: «большая глупая лысая американская обезьяна без подбородка»…

Во время перепалки в ходе игры в скребл Лиза напоминает Барту о завтрашнем школьном тесте на одаренность. И действие переносится в начальную школу Спрингфилда, где Барт сдает тест. Первый вопрос, на который ему предстоит ответить, – это классическая (и, откровенно говоря, довольно скучная) математическая задача о двух поездах, отправляющихся из Санта-Фе и Феникса с разной скоростью, разным количеством пассажиров, которые то садятся в поезд, то выходят из него в случайном, на первый взгляд запутанном порядке. Барт оказывается в тупике и решает украсть лист с ответами у Мартина Принса, умника из его класса.

План Барта срабатывает, причем настолько хорошо, что Барта вызывают в кабинет директора Скиннера на встречу с доктором Прайором, школьным психологом. Обман Барта выливается в результат, согласно которому IQ мальчика составляет 216 баллов, и доктор Прайор решает, что нашел ребенка-вундеркинда. Предположение доктора подтверждается, когда он спрашивает Барта, не считает ли тот уроки скучными и разочаровывающими. Барт дает ожидаемый ответ, но по совсем другим причинам.

Доктор Прайор уговаривает Гомера и Мардж записать сына в школу для одаренных детей, что вполне предсказуемо превращает жизнь Барта в кошмар. Во время первого же обеденного перерыва одноклассники Барта хвастают своим интеллектом, предлагая ему всевозможные сделки, сформулированные в математических и научных терминах. Один ученик делает такое предложение: «Послушай, Барт, я поменяюсь с тобой весом шара с восьмой луны Юпитера из моего завтрака на вес пера второй луны Нептуна из твоего завтрака».

Пока Барт пытается понять, что такое луны Нептуна и шары Юпитера, другой ученик делает еще одно, не менее запутанное предложение: «А я поменяю тысячу пиколитров своего молока на четверть пинты твоего». Еще одна бессмысленная головоломка, предназначенная исключительно для того, чтобы унизить новичка.

На следующий день настроение Барта портится еще больше, когда он узнает, что первый урок – математика. Учительница предлагает ученикам задачу, и именно в этот момент мы сталкиваемся с первым примером явной математической шутки в «Симпсонах». Стоя у доски, учительница пишет уравнение и говорит: «Таким образом, y равняется r в кубе, и если вы правильно определите уровень изменения в этом графике, то, думаю, будете приятно удивлены».

Далее наступает короткая пауза, после которой все ученики (кроме одного) находят ответ и начинают смеяться. Пока одноклассники Барта смеются, учительница пытается ему помочь и пишет на доске пару подсказок. В конце концов она записывает полное решение задачи. Но Барт продолжает недоумевать, и тогда учительница поворачивается к нему и говорит: «Ты разве не понял, Барт? Производная dy равняется трем r квадрат dr на три, или r квадрат dr, или r dr r».

Объяснения учительницы отображены на представленном ниже схематическом рисунке. Однако я подозреваю, что даже при наличии этой визуальной подсказки вы можете пребывать в не меньшем замешательстве, чем Барт. Если это действительно так, советую обратить внимание на последнюю строку на доске (r dr r). В ней содержится не только ответ задачи, но и вся соль шутки. Здесь возникают два вопроса: почему строка r dr r такая смешная и почему она является решением математической задачи?

Когда в эпизоде «Барт – гений» учительница ставит задачу по матанализу, она использует нестандартную схему и непоследовательное представление символов, а также допускает ошибку. Тем не менее ей удается получить правильный ответ. На рисунке воспроизведено то, что писала учительница на доске, за одним исключением: здесь задача сформулирована более четко. Шесть строк, расположенных под окружностью, – это важные уравнения.

Класс смеется, потому что строка r dr r звучит как har-de-har-har – выражение, которое употребляется, чтобы продемонстрировать сарказм в ответ на плохую шутку. Фразу har-de-har-har популяризировал Джеки Глисон, сыгравший Ральфа Крэмдена в классическом ситкоме 1950-х The Honeymooners («Новобрачные»). А в 1960-х годах она получила еще большую известность, после того как анимационная студия Hanna-Barbera придумала персонажа по имени Hardy Har Har (Выносливый Хар Хар) – угрюмую гиену в плоской шляпе с полями, которая в компании со львом Липпи стала героем десятков мультфильмов.

Таким образом, фраза har-de-har-har – своего рода каламбур на тему r dr r, но почему она является решением математической задачи? Дело в том, что задача относится к пользующейся дурной славой области математики под названием «математический анализ» – дисциплины, вселяющей ужас в сердца многих подростков и вызывающей кошмарные воспоминания у людей постарше. Как объясняет учительница во время постановки задачи, цель математического анализа – «определить уровень изменения» одной величины, в данном случае y, по сравнению с изменениями другой величины, r.

Если вы помните правила матанализа[5 - Возможно, тем читателям, которые подзабыли правила дифференциального и интегрального исчисления, необходимо напомнить следующее общее правило: производная от y = r

 – это dy/dr = n ? r

. Читателей, которые вообще не знакомы с высшей математикой, готов заверить в том, что это белое пятно не помешает им понять оставшуюся часть главы.], то вам будет нетрудно понять логику этой шутки и получить правильный ответ: r dr r. Если же вы относитесь к числу тех, кто приходит от матанализа в ужас или страдает от тяжелых воспоминаний, не волнуйтесь: сейчас еще не время начинать длинную лекцию о тонкостях этого предмета. Вместо этого нам предстоит найти ответ на более насущный вопрос: почему авторы «Симпсонов» включают сложные математические концепции в свой комедийный сериал?

В состав основной команды, работавшей над первым сезоном «Симпсонов», входило восемь умнейших комедийных сценаристов Лос-Анджелеса. Они стремились писать сценарии, в которых бы упоминались продвинутые концепции из всех областей человеческого знания, и матанализ относился к числу их главных приоритетов, поскольку два сценариста были страстными поклонниками математики. Именно эти два нерда придумали шутку с r dr r; и именно им следует отдать должное за то, что сериал «Симпсоны» стал орудием распространения математических шуток.

С одним из них, Майком Рейссом, я познакомился во время встречи со сценаристами «Симпсонов». Точно так же как Мэгги, он продемонстрировал свои математические способности еще будучи малышом, когда складывал кубики. Рейсс отчетливо помнит момент, когда понял, что кубики подчиняются бинарному закону в том смысле, что два самых маленьких кубика имеют такой же размер, как один средний; два средних кубика такого же размера, как один большой, а два больших кубика равны одному очень большому кубику.

Как только Рейсс научился читать, его интерес к математике перерос в любовь к головоломкам.
Страница 4 из 7

Особенно его привлекали книги Мартина Гарднера, величайшего специалиста по математическим играм и развлечениям. Игривый подход Гарднера к математическим задачам нравился людям всех возрастов. Его друг однажды сказал: «Мартин Гарднер превратил тысячи детей в математиков, а тысячи математиков – в детей».

Сначала Рейсс прочитал книгу The Unexpected Hanging and Other Mathematical Diversions («Неожиданное зависание и другие математические отклонения»), а затем начал тратить все свои карманные деньги на другие книги Гарднера. В возрасте восьми лет Рейсс написал Гарднеру письмо, в котором признался, что он его большой поклонник, а затем рассказал об одном интересном наблюдении, касающемся палиндромных квадратов, а именно, что эти числа содержат, как правило, нечетное количество цифр. Палиндромные квадраты целых чисел – это просто квадраты целых чисел, которые имеют такой же вид, если их записать в обратном порядке, например 121 (11?) или 5 221 225 (2285?). Восьмилетний мальчик оказался абсолютно прав, поскольку существует тридцать пять таких чисел меньше 100 миллиардов, и только в одном из них четное количество цифр – 698 896 (836?).

Рейсс неохотно признался мне, что его письмо Гарднеру также содержало один вопрос. Он спрашивал, является ли количество простых чисел конечным или бесконечным. Сейчас он несколько смущенно вспоминает об этом: «Я отлично помню то письмо и тот глупый, наивный вопрос».

Большинство людей посчитали бы, что Рейсс слишком строг к себе, восьмилетнему, потому что ответ далеко не так очевиден. Его вопрос основан на факте, что у каждого целого числа есть делители – числа, на которые оно делится без остатка. Простое число примечательно тем, что у него только два делителя – 1 и само число (так называемые тривиальные делители). Таким образом, 13 – это простое число, потому что у него нет нетривиальных делителей, а 14 – нет, поскольку его можно разделить на 2 и 7. Все числа являются либо простыми (например 101), либо их можно разделить на простые делители (например 102 = 2 ? 3 ? 17). Между числами 0–100 существует 25 простых чисел, между 100–200 – 21 простое число, а между 200–300 – всего 16 простых чисел, стало быть, количество простых чисел уменьшается. Тем не менее закончатся ли они со временем или их список бесконечен?

Гарднер с удовольствием рассказал Рейссу о доказательстве древнегреческого ученого Эвклида, который работал в Александрии около 300 года до нашей эры[6 - Кстати говоря, по случайному стечению обстоятельств Гарднер жил на улице Эвклида, когда писал Рейссу о том, что у Эвклида есть ответ на его вопрос.]. Эвклид был первым математиком, доказавшим существование бесконечного множества простых чисел. Как ни странно, он получил этот результат, выдвинув прямо противоположную гипотезу и применив к ней метод, известный как доказательство от противного. Один из способов объяснить подход Эвклида – начать со следующего смелого утверждения:

Предположим, что количество простых чисел конечно и все они собраны в список: p

, p

, p

, … p

.

Мы можем изучить следствия, вытекающие из этого утверждения, перемножив все простые числа в этом списке и прибавив 1, что создает новое число: N = p

? p

? p

? … ? p

+ 1. Это новое число N является либо простым, либо нет, но в любом случае оно противоречит исходному утверждению Эвклида.

• Если N – простое число, тогда оно отсутствует в первоначальном списке. Таким образом, утверждение о том, что это полный список, ошибочно.

• Если N – не простое число, тогда оно должно иметь простые делители, которые должны быть новыми простыми числами, поскольку деление простых чисел в исходном списке на N даст в остатке 1. Стало быть, утверждение о том, что это полный список, тоже ошибочно.

Следовательно, исходное утверждение Эвклида ложно: его конечный список не содержит всех простых чисел. Более того, любая попытка опровергнуть это утверждение, включив в список новые простые числа, обречена на неудачу, так как приведенные выше аргументы можно снова использовать для доказательства того, что список по-прежнему неполный, а значит, должно существовать бесконечное количество простых чисел.

Шли годы, Рейсс стал весьма одаренным юным математиком и занял достойное место среди математиков штата Коннектикут. В то же время у него проявился особый талант к написанию комедий, и он даже получил определенное признание в этой области. Например, когда стоматолог Рейсса похвастался ему, что всегда отправляет в журнал New York Magazine остроумные, но безуспешные заявки на участие в еженедельном юмористическом конкурсе, молодой Майк признался, что тоже принимал участие в этом конкурсе и даже получил награду. «Я часто побеждал в детстве, – сказал Рейсс. – И даже не осознавал, что соревнуюсь с профессиональными писателями-юмористами. Впоследствии я выяснил, что сценаристы шоу “Сегодня вечером” тоже принимают участие в этом конкурсе, а я, мальчик десяти лет от роду, выиграл его».

Майк Рейсс (второй слева в последнем ряду) среди членов математического кружка средней школы восточного Бристоля. Помимо запечатленного на фотографии мистера Козиковски, который обучал членов кружка, у Рейсса было много других математических наставников. Например, учитель геометрии мистер Бергстром. В эпизоде под названием «Замена учителя Лизы» (Lisa’s Substitute, сезон 2, эпизод 19; 1991 год) Рейсс продемонстрировал свою благодарность этому человеку, назвав учителя Лизы мистером Бергстромом

Фотографию предоставил Майк Бэннон

Когда Рейссу предложили место в Гарвардском университете, ему пришлось решать, какой предмет выбрать в качестве профилирующего – математику или английский язык. В итоге желание Рейсса стать писателем затмило страсть к числам. Тем не менее его математический склад ума всегда ему помогал, и Рейсс никогда не забывал свою первую любовь.

Детство еще одного одаренного математика, участвовавшего в создании мультсериала «Симпсоны», было примерно таким же. Эл Джин родился в Детройте в 1961 году, через год после рождения Майка Рейсса. Он тоже любил головоломки Мартина Гарднера и тоже посещал математический кружок. В 1977 году на математическом конкурсе штата Мичиган, в котором принимали участие двадцать тысяч учеников, Джин занял третье место. Он даже посещал летние лагеря с интенсивным обучением при Технологическом университете Лоуренса и Чикагском университете. Такие лагеря организовывались в период холодной войны с целью воспитания математических умов, которые могли бы соперничать с советскими детьми, прошедшими комплекс элитных программ обучения математике. Благодаря столь интенсивной подготовке Джина зачислили на факультет математики Гарвардского университета, когда ему было всего 16 лет.

Во время учебы в Гарварде Джин разрывался между изучением математики и новым увлечением – написанием комедий. Впоследствии его взяли в юмористический журнал Harvard Lampoon, издававшийся на протяжении самого продолжительного периода. В итоге Джин начал меньше думать о математических доказательствах и больше – о шутках.

Рейсс также был одним из авторов журнала Harvard Lampoon, который прославился на всю Америку после того,
Страница 5 из 7

как в 1969 году опубликовал пародию под названием Bored of the Rings[7 - Берд Г., Кенни Д. Пластилин колец. М.: Симпозиум, 2002.] на ставшую классикой книгу Толкиена. Затем, в 1970-х годах, Джин принимал участие в создании театрального шоу «Лемминги», после чего работал в радиошоу под названием The National Lampoon Radio Hour («Радиочас журнала National Lampoon»). Рейсс и Джин подружились и стали партнерами по писательской работе в журнале Harvard Lampoon. Именно этот университетский опыт убедил их в необходимости искать вакансию телевизионных сценаристов после окончания университета.

Звездный час Майка Рейсса и Эла Джина настал в тот момент, когда их наняли как сценаристов в шоу «Сегодня вечером», где высоко оценили присущие им качества нердов. Ведущий шоу Джонни Карсон был не только астрономом-любителем, но и разоблачителем псевдонауки, время от времени жертвовавшим по 100 тысяч долларов в Образовательный фонд Джеймса Рэнди – организацию, деятельность которой связана с пропагандой рационального мышления. Когда Рейсс и Джин ушли из «Сегодня вечером» в шоу It’s Garry Shandling’s Show («Это шоу Гарри Шендлинга»), они узнали, что Шендлинг, прежде чем начать карьеру в сфере комедии, изучал электротехнику в Аризонском университете.

Когда Рейсс и Джин присоединились к команде сценаристов, работавших над первым сезоном «Симпсонов», у них возникло ощущение, что это идеальная возможность выразить свою любовь к математике. «Симпсоны» оказались не просто совершенно новым шоу; у них был абсолютно иной формат, а именно выходящий в прайм-тайм комедийный мультсериал, рассчитанный на зрителей всех возрастов. Обычные правила здесь не работали, что, по всей вероятности, и объясняет тот факт, что Рейссу и Джину разрешали (и даже поощряли) как можно чаще включать в эпизоды элементы поведения, свойственного нердам.

Рейсс и Джин были ключевыми членами команды авторов первого и второго сезонов «Симпсонов», что позволило им включить в эпизоды ссылки на ряд важных математических концепций. Тем не менее математическое сердце «Симпсонов» забилось еще быстрее начиная с третьего сезона, после того как этих двух выходцев из журнала Harvard Lampoon назначили на должности исполнительных продюсеров.

Это стало переломным моментом в истории мультсериала «Симпсоны». Теперь Джин и Рейсс могли не только включать в эпизоды собственные математические шутки, но и нанимать комедийных сценаристов с серьезной математической подготовкой. В последующие годы во время совещаний по редактированию сценариев «Симпсонов» периодически возникала атмосфера, больше напоминающая урок геометрии или семинар по теории чисел, а созданные в итоге эпизоды содержали больше математических аллюзий, чем любой другой сериал за всю историю телевидения.

Фотография членов математического кружка из выпускного альбома школы Роупера за 1977 год. На подписи под ней сказано, что Эл Джин – третий слева ученик во втором ряду, а также что он занял первое и третье место на конкурсе в штате Мичиган. Учителем, который оказал на Джина самое большое влияние, был покойный профессор Арнольд Росс, руководивший летней программой обучения Чикагского университета

Фотографию предоставил Эл Джин

Глава 2

Хотите ли вы знать число ??

Порой в «Симпсонах» упоминаются малоизвестные математические концепции, и с некоторыми из них мы действительно встретимся в следующей главе. Однако в остальных случаях шуточные ситуации, смоделированные Рейссом, Джином и их коллегами в эпизодах сериала, касаются хорошо знакомых многим зрителям математических концепций. Классический пример – число ?, неоднократно появлявшееся в мультсериале за прошедших два десятилетия.

На всякий случай напоминаю, что ? – это отношение длины окружности к ее диаметру. Для того чтобы составить представление о приблизительном значении числа ?, можно нарисовать окружность, а затем отрезать кусок веревки длиной, равной ее диаметру. Если проложить этот кусок веревки по краю окружности, он поместится там немногим более трех раз – точнее говоря, 3,14 раза. Это и есть приблизительное значение числа ?. Соотношение между числом ?, длиной окружности и диаметром можно описать с помощью следующего уравнения:

длина окружности = ? ? диаметр

C = ?d

Поскольку диаметр окружности в два раза больше радиуса, это уравнение можно записать в таком виде:

длина окружности= 2 ? ? ? радиус

C = 2?r

Пожалуй, это и есть первый маленький шаг, который мы совершаем в детстве при переходе от простой арифметики к более сложным концепциям. Я до сих пор помню свою первую встречу с числом ?, настолько она тогда меня потрясла. Математика больше не сводилась исключительно к умножению в столбик и простым дробям; теперь в ней появилось нечто таинственное, элегантное и универсальное: каждый круг в этом мире подчиняется уравнению с участием числа ?, от колеса обозрения до фрисби, от лепешки до земного экватора.

Кроме того, помимо вычисления длины окружности, число ? можно использовать для расчета площади, которая ограничена этой окружностью:

площадь = ? ? радиус?

A = ?r?

В эпизоде «Человек-пирог» (Simple Simpson, сезон 15, эпизод 19; 2004 год) есть основанная на игре слов шутка, касающаяся приведенного выше уравнения. В этом эпизоде Гомер изображает супергероя по имени Человек-пирог, который наказывает злодеев, бросая им в лицо пирог. И первый его акт возмездия в данном качестве направлен на обидчика Лизы. Свидетелем сцены становится персонаж по имени Дредерик Тейтум, знаменитый бывший боксер из Спрингфилда, который заявляет: «Все мы знаем формулу ?r?, но сегодня мы говорим: “Пирог – это справедливость”. Я приветствую это».

И хотя шутку включил в сценарий Эл Джин, он неохотно приписывает себе эту заслугу (или, возможно, вину): «Да это же очень старая шутка. Я услышал ее много лет назад. Человек, которого следует поблагодарить за нее, – кто-то из 1820 года».

Джин явно преувеличивает, когда упоминает 1820 год, но слова Тейтума действительно представляют собой новую интерпретацию классической шутки, передаваемой из поколения математиков в поколение. Самая известная ее версия появилась в 1951 году в американском комедийном сериале The George Burns and Gracie Allen Show («Шоу Джорджа Бернса и Грейси Аллен»). В эпизоде под названием «Как девушка-подросток проводит уик-энд» Грейси приходит на помощь юной Эмили, которая жалуется на домашнее задание:

Эмили. Хотелось бы мне, чтобы геометрия была такой же легкой, как испанский язык.

Грейси. Так, может, я тебе помогу? Скажи мне что-нибудь на языке геометрии.

Эмили. Сказать что-нибудь на языке геометрии?

Грейси. Да, давай же.

Эмили. Ну хорошо. Ммм… ?r?.

Грейси. И этому учат сейчас в школе? ?r??

Эмили. Да.

Грейси. Эмили, пирог круглый. Печенье круглое. Крекеры квадратные.

В основе этой шутки лежит похожее звучание слова pie («пирог») и названия буквы ?, что и служит поводом для каламбура. Следовательно, комики должны быть благодарны Уильяму Джонсу за введение символа ?. Этот математик XVIII столетия, так же как и многие другие ученые, зарабатывал себе на жизнь уроками в лондонских кофейнях, посетители которых должны были заплатить за вход один пенни.
Страница 6 из 7

Преподавая в этих так называемых грошовых университетах, Джонс параллельно работал над крупным научным трудом под названием A New Introduction to the Mathematics («Новое введение в математику»). Именно в этой книге он впервые использовал греческую букву ? в контексте обсуждения геометрии круга. В итоге появилась почва для новых математических каламбуров. Джонс выбрал символ ?, потому что это начальная буква греческого слова ????????? (периферия), что означает «окружность».

* * *

За три года до появления шутки с числом ? в эпизоде «Человек-пирог» авторы «Симпсонов» уже упоминали это число в серии «Пока, пока, зубрила» (Bye, Bye, Nerdie, сезон 12, эпизод 16; 2001 год). Но на этот раз вместо воскрешения старой шутки сценаристы создали совершенно новую, хотя и основанную на одном любопытном случае из истории числа ?. Для того чтобы оценить ее по достоинству, сперва необходимо вспомнить значение числа ? и то, как оно измерялось на протяжении столетий.

Я уже говорил, что ? = 3,14 – всего лишь приближенное значение. Дело в том, что ? – иррациональное число, то есть назвать его абсолютно точное значение невозможно, поскольку в нем бесконечное количество десятичных знаков, в которых отсутствует какая-либо закономерность. Тем не менее математики прошлого ставили перед собой задачу выйти за рамки существующей приближенной оценки 3,14 и поймать это ускользающее число, рассчитав его максимально точное значение.

Первую серьезную попытку это сделать предпринял Архимед в третьем столетии до нашей эры. Он понимал, что точность измерения ? зависит от точности измерения длины окружности. Но это весьма сложная задача, так как окружность состоит из кривых малой кривизны, а не из прямых линий. Важным достижением Архимеда стало решение обойти проблему измерения кривых путем аппроксимации окружности прямыми линиями.

Возьмем окружность, диаметр которой (d) равен единице. Мы знаем, что C = ?d, а значит, длина окружности (С) равна ?. Затем нарисуем два квадрата, один за пределами окружности и один внутри нее.

Безусловно, настоящая окружность должна быть меньше периметра большего квадрата и больше периметра меньшего квадрата. Таким образом, измерив периметры двух квадратов, мы получим верхний и нижний пределы длины окружности.

Периметр большего квадрата измеряется легко, поскольку каждая его сторона имеет ту же длину, что и диаметр круга, который, как нам известно, равен единице. Следовательно, периметр большего квадрата составляет 4 ? 1 = 4 единицы.

Периметр меньшего квадрата вычислить несколько труднее, но мы можем определить длину каждой его стороны с помощью теоремы Пифагора. Очень кстати, что диагональ квадрата и две его стороны образуют прямоугольный треугольник, гипотенуза (H) которого не только совпадает с диагональю квадрата, но и имеет ту же длину, что и диаметр окружности, то есть единицу. Теорема Пифагора гласит, что квадрат гипотенузы равен сумме квадратов его катетов. Если мы обозначим их символом S, то H? = S? + S?. Если H = 1, то две другие стороны должны иметь длину 1/?2 единиц. Следовательно, периметр меньшего квадрата равен 4 ? 1/?2 = 2,83 единицы.

Учитывая, что длина окружности должна быть меньше периметра большого круга и больше периметра малого, мы можем с уверенностью заявить, что она должна попадать в промежуток от 2,83 до 4,00.

Не забывайте: ранее мы утверждали, что длина окружности диаметром 1 единица равна ?, поэтому значение ? должно находиться между 2,83 и 4,00.

В этом и состояло великое открытие Архимеда.

Возможно, оно не произвело на вас особого впечатления, ведь мы уже знаем, что ? равно примерно 3,14, так что нижний предел 2,83 и верхний – 4,00 не представляют для нас никакого интереса. Однако сила открытия Архимеда состояла в том, что его результат подлежал уточнению. Вместо того чтобы размещать окружность между большим и малым квадратами, Архимед разместил ее между большим и малым шестиугольниками. Если у вас есть десять свободных минут и вы уверенно оперируете числами, то можете попробовать сами доказать, что по результатам измерения периметра этих двух шестиугольников значение числа ? должно быть больше 3,00 и меньше 3,464.

У шестиугольника больше сторон, чем у квадрата, что делает его более точным приближением к окружности. Это объясняет, почему шестиугольник позволяет вычислить более узкие пределы для значения ?. Тем не менее и в этом случае имеет место значительная погрешность. Поэтому Архимед продолжал расчеты, применяя этот метод снова и снова и увеличивая количество сторон многоугольника, благодаря чему получал все более точное приближение к окружности.

В конечном итоге упорство привело Архимеда к тому, что он заключил окружность между двумя многоугольниками с 96 сторонами и рассчитал периметр обеих фигур. Это было впечатляющее достижение, особенно учитывая, что Архимед не имел современной алгебраической системы обозначений, ничего не знал об арифметических действиях с десятичными дробями и ему приходилось выполнять все эти громоздкие вычисления вручную. Однако работа стоила затраченных усилий, поскольку ему удалось заключить значение числа ? между числами 3,141 и 3,143.

Через восемь столетий, в V веке нашей эры, китайский математик Цзу Чунчжи развил подход Архимеда на шаг дальше (или на 12 192 шага, если точнее), использовав два многоугольника с 12 288 сторонами для доказательства того, что значение числа ? лежит между числами 3,1415926 и 3,1415927.

По всей вероятности, к этому моменту вы уже поняли, что определение значения числа ? – непростая задача, работа над которой будет продолжаться вечно, а все потому, что ? – иррациональное число. Но есть ли смысл в вычислении значения ? с более высокой точностью? Мы вернемся к этому вопросу чуть позже, а пока вы уже узнали о числе ? достаточно для того, чтобы перейти к контексту математической шутки из эпизода «Пока, пока, зубрила».

Сюжет этого эпизода сфокусирован на травле умников, которая по-прежнему остается глобальной проблемой, несмотря на мудрые слова американского педагога Чарльза Сайкса, написанные в 1995 году: «Будь вежлив с ботаниками. Не исключено, что однажды ты будешь работать на одного из них». Когда Лиза задается целью найти объяснение того, почему хулиганы так любят нападать на умников, ей приходит в голову мысль, что они издают запах, который отмечает их как жертв. Лиза убеждает нескольких школьных друзей из числа ботанов поработать на спортивных тренажерах до пота, а затем собирает его и анализирует. После длительных исследований ей наконец удается выделить феромон, который источает каждый «умник, ботаник и очкарик» и который, возможно, притягивает хулиганов. Лиза называет его «пойндекстрозой»[8 - В русском переводе «ботаноз». Прим. перев.], в честь вундеркинда Пойндекстера, персонажа мультсериала 1959 года Felix the Cat («Кот Феликс»).

Для того чтобы проверить свою гипотезу, Лиза наносит немного пойндекстрозы на пиджак грозного бывшего боксера Дредерика Тейтума, пришедшего в ее школу. Как и следовало ожидать, феромон притягивает школьного хулигана Нельсона Манца. И хотя Нельсон понимает, что нападать на бывшего боксера абсолютно бессмысленно, он не может
Страница 7 из 7

сопротивляться воздействию пойндекстрозы и даже вытягивает у Тейтума трусы.

Взволнованная своим открытием, Лиза решает представить отчет о работе «Воздушные феромоны и агрессия хулиганов» на конференции «12-я ежегодная научная штука», которую ведет любимец обитателей Спрингфилда, рассеянный профессор Джон Нерделбаум Фринк-младший. Фринк пытается представить Лизу, но атмосфера на конференции настолько накалена, а ее участники так возбуждены, что ему трудно призвать их к порядку. В конце концов Фринк в отчаянии восклицает: «Ученые, ученые! Прошу, прошу порядка! К порядку, смотреть вперед, руки сложить, слушать внимательно. Число ? равно трем!»

Шум внезапно прекращается. Идея профессора Фринка сработала, поскольку он совершенно правильно предположил, что заявление о точном значении числа ? так поразит присутствующих в зале, что они потеряют дар речи. Как смеет кто бы то ни было заменять тройкой число 3,141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513… после тысячелетних попыток определить его значение с невероятной точностью!

Эта сцена перекликается с лимериком, написанным историком, профессором колледжа Колорадо Харви Картером (1904–1994):

Tis a favorite project of mine,

A new value of pi to assign.

I would fix it at 3

For it’s simpler, you see,

Than 3 point 1 4 1 5 9.

(Люблю я это делать –

Искать новое значение «пи».

Я бы выбрал число 3.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (http://www.litres.ru/saymon-singh/simpsony-i-ih-matematicheskie-sekrety/?lfrom=279785000) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

notes

Сноски

1

Халвани Р., Скобл Э. «Симпсоны» как философия. М.: У-Фактория, 2005.

2

В 1951 году в журнале Newsweek было напечатано, что «нерд» (nerd) – это пренебрежительное слово, получающее все большую популярность в Детройте. В 60-х годах ХХ столетия студенты Политехнического института Ренсселера отдавали предпочтение написанию knurd (drunk наоборот), подчеркивая тем самым, что они представляют собой полную противоположность любителей вечеринок. Однако за последнее десятилетие принадлежность к племени нердов стала престижной, и этот термин получил распространение в среде математиков и им подобных.

3

Гик (англ. geek) – шутливое и несколько пренебрежительное прозвище «зубрил», помешанных на учебе, особенно тех, кого ничего кроме компьютеров не интересует. Прим. ред.

4

В английском языке есть выражение Be there or be square (дословно: «Будь там – или будешь квадратом»), которое означает: «Будь там – или ты не с нами». Квадрат как фигура, символизирующая порядок, означает также нечто сдерживающее, консервативное. Следовательно, если ты «квадрат», значит, ты консервативен и не интересуешься ничем новым. Автор книги перефразировал это выражение так: Be there or be regular quadrilateral, что дословно переводится как «Будь там – или будешь правильным многоугольником». Прим. пер.

5

Возможно, тем читателям, которые подзабыли правила дифференциального и интегрального исчисления, необходимо напомнить следующее общее правило: производная от y = r

 – это dy/dr = n ? r

. Читателей, которые вообще не знакомы с высшей математикой, готов заверить в том, что это белое пятно не помешает им понять оставшуюся часть главы.

6

Кстати говоря, по случайному стечению обстоятельств Гарднер жил на улице Эвклида, когда писал Рейссу о том, что у Эвклида есть ответ на его вопрос.

7

Берд Г., Кенни Д. Пластилин колец. М.: Симпозиум, 2002.

8

В русском переводе «ботаноз». Прим. перев.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Здесь представлен ознакомительный фрагмент книги.

Для бесплатного чтения открыта только часть текста (ограничение правообладателя). Если книга вам понравилась, полный текст можно получить на сайте нашего партнера.