Режим чтения
Скачать книгу

Высший замысел читать онлайн - Хокинг Стивен

Высший замысел

Стивен Хокинг

Леонард Млодинов

Когда и как начала быть Вселенная? Почему мы находимся там, где находимся? Какова природа реальности? Почему Вселенная настроена именно тем тончайшим образом, который позволяет существовать человеку? И наконец – является ли установившийся в нашем мире порядок свидетельством высшего замысла всемогущего Создателя, который определил природу вещей – или же наука может предложить иное объяснение?

Фундаментальные вопросы о происхождении Вселенной и самой жизни, которые некогда были уделом философии, теперь находятся в ведении и философов, и теологов, и ученых, которые не устают спорить. В этой книге авторы, Стивен Хокинг и Леонард Млодинов, излагают актуальные научные гипотезы о тайнах мироздания – в популярной форме, языком одновременно простым и точным.

Краткий, удивительный и богато иллюстрированный путеводитель по открытиям, которые меняют наши представления и угрожают некоторым из наиболее дорогих нам убеждений. «Высший замысел» – книга, которая расскажет больше и удивит сильнее, чем любая другая.

Стивен Хокинг, Леонард Млодинов

Высший замысел

STEPHEN HAWKING and LEONARD MLODINOW

The Grand Design

Издательство выражает благодарность литературным агентствам Writers House LLC (США) и Synopsis Literary Agency (Россия) за содействие в приобретении прав.

© Stephen Hawking and Leonard Mlodinow, 2010.

Illustrations © Peter Bollinger, 2010

© Cartoons by Sidney Harris © Sciencecartoonsplus.com

© М.В. Кононов, пер. с англ., 2017

© ООО «Издательство АСТ», 2017

* * *

1. Загадка бытия

Жизнь каждого из нас скоротечна, и за это время мы способны познать лишь малую часть Вселенной. Но люди любознательны. Мы интересуемся, мы ищем ответы. Живя в этом огромном мире, где чередуются добро и зло, люди, вглядываясь в необъятные небеса, всегда задавали себе множество вопросов. Как понять мир, в котором мы оказались? Как развивается Вселенная? В чем суть реальности? Откуда все это взялось? Нуждалась ли Вселенная в творце? Большинство из нас не уделяют значительного времени размышлениям над этими вопросами, но почти все иногда задают их себе.

Традиционно на такие вопросы отвечала философия, но сейчас она мертва. Она не поспевает за современным развитием науки, особенно физики. Теперь исследователи, а не философы держат в своих руках факел, освещающий наш путь к познанию. Цель этой книги – дать ответы, основанные на последних научных открытиях и теоретических разработках. Они приводят нас к новой картине мира, которая значительно отличается от традиционной и даже от той, которую мы могли нарисовать себе еще лет десять или двадцать назад. Причем первые штрихи этой новой картины возникли почти столетие назад.

«Это моя философия…»

Согласно традиционному пониманию Вселенной, все тела в ней движутся по строго определенным траекториям и имеют четкую историю. Мы можем определить их точное положение в любой момент времени. Несмотря на то что такой подход вполне удовлетворителен для повседневных целей, в 1920-х годах было обнаружено, что эта «классическая» картина не соответствует кажущемуся странным поведению объектов на атомном и субатомном уровнях. Там пришлось применить другую систему взглядов, названную квантовой физикой. Квантовые теории оказались способными с исключительно высокой точностью предвычислять явления, происходящие в этих масштабах, и в то же время, будучи применимыми к макромиру нашей обычной жизни, они дают те же прогнозы, что и старые классические теории. Но квантовая физика базируется на совершенно иных представлениях о физической реальности, чем классическая физика.

Квантовые теории можно сформулировать по-разному, но, пожалуй, самое образное определение дал Ричард (Дик) Фейнман (1918–1988), который был весьма колоритной личностью. Он работал в Калифорнийском технологическом институте и частенько играл на барабанах бонго в ближайшем стрип-клубе. По Фейнману, система мира имеет не одну-единственную историю, а все, какие только возможны. В поисках ответа на наши вопросы мы подробно объясним фейнмановский подход и применим его для рассмотрения идеи о том, что у Вселенной нет одной-единственной истории и даже нет отдельного, независимого существования. Это идея выглядит радикальной даже для многих физиков. Действительно, она, как и многие другие идеи в современной науке, как будто противоречит здравому смыслу. Но здравый смысл зиждется на повседневном опыте, а не на знаниях о Вселенной, которая открывается нам через чудеса технологий, позволяющие заглянуть хоть в начало ее развития, хоть в глубь атома.

До возникновения современной физики было принято считать, что все знание мира может быть получено с помощью непосредственных наблюдений, что вещи таковы, какими они выглядят, как воспринимаются нашими органами чувств. Но впечатляющий успех современной физики, основанный на концепциях вроде фейнмановской, противоречащих нашему повседневному опыту, показал, что это не так. Стало быть, простое восприятие реальности несовместимо с современной физикой. Чтобы иметь дело с такими парадоксами, будем придерживаться подхода, который мы называем моделезависимым реализмом. Он основывается на том, что наш мозг интерпретирует сигналы, поступающие от органов чувств, и создает модель мира. Когда такая модель удачно объясняет события, мы склонны приписывать ей, а также составляющим ее элементам и концепциям свойство реальности, или абсолютной истины. Но ведь одно и то же физическое явление можно смоделировать по-разному, используя различные фундаментальные идеи и концепции. Если две такие физические теории достоверно предсказывают одни и те же события, нельзя сказать, что одна модель реальнее другой, и мы вполне можем использовать ту, которая наиболее удобна.

В истории науки мы видим последовательность все более улучшающихся теорий, или моделей мира: от Платона до классической теории Ньютона и до современных квантовых теорий. Напрашивается вопрос: достигнет ли эта последовательность когда-нибудь конечной точки, окончательной теории Вселенной, которая включит в себя все взаимодействия и предскажет все наши наблюдения, или же мы будем бесконечно искать более совершенные теории, но так и не найдем той, которую уже невозможно будет улучшить? У нас пока нет четкого ответа на этот вопрос, но уже есть кандидат на окончательную теорию всего, если таковая вообще существует. Это так называемая М-теория. Она представляет собой всего лишь модель, обладающую всеми свойствами, которыми, по нашему мнению, должна обладать окончательная теория. Бо?льшая часть нашего последующего обсуждения будет основываться именно на М-теории.

М-теория – это не теория в обычном смысле. Это целое семейство различных теорий, каждая из которых является хорошим описанием наблюдений лишь для ограниченного ряда физических ситуаций. Она немного напоминает карту. Хорошо известно, что на одной карте невозможно показать всю земную поверхность без искажений. Обычная проекция Меркатора, используемая для карт мира, сильно искажает площади, преувеличивая их изображение на карте по мере приближения к Северному и Южному полюсам, а сами полюса картой в этой проекции вовсе не покрываются. Чтобы правильно показать на карте всю Землю
Страница 2 из 10

целиком, нужно использовать набор карт, каждая из которых покрывает ограниченную область. Эти карты накладываются друг на друга, и в местах перекрытия отдельных листов на них изображен один и тот же ландшафт. То же самое и с М-теорией: все составляющие ее теории, даже если они выглядят сильно отличающимися друг от друга, могут рассматриваться как различные аспекты одной и той же общей теории. Они представляют собой варианты одной теории, применимые лишь в ограниченных пределах, например когда какие-то величины, скажем энергия, малы. Подобно перекрывающимся листам карт в проекции Меркатора, там, где различные версии накладываются друг на друга, они предсказывают одни и те же явления. Но точно так же, как не существует плоской карты, которая без искажений отображает всю земную поверхность, не существует и единой теории, которая хорошо отображает то, что наблюдается во всех ситуациях.

Мы расскажем, какие ответы может предложить М-теория на вопрос о сотворении мира. Согласно М-теории, наша Вселенная не единственная. М-теория предсказывает, что из ничего было создано огромное множество вселенных. Для их сотворения не требуется вмешательства сверхъестественного существа или Бога. Скорее, эти многочисленные вселенные возникают естественным путем по законам физики. Они являются научным предсказанием. У каждой вселенной есть много возможных историй и много возможных состояний в более поздние времена, то есть во времена вроде нынешнего, спустя продолжительное время после их сотворения. Большинство этих состояний должны быть совершенно непохожими на видимую нам Вселенную и совершенно неподходящими для любой формы жизни. Лишь в очень немногих из них условия могут позволить наличие существ, подобных нам. Таким образом, наше присутствие выбирает из этого обширного множества только те вселенные, которые совместимы с нашим существованием. И хотя мы малы и незначительны в космическом масштабе, само наше присутствие делает нас в некотором смысле властелинами творения.

Карта мира. Чтобы представить Вселенную, может потребоваться ряд перекрывающихся теорий, подобно тому как для показа всей Земли без искажений требуется набор перекрывающихся карт.

Чтобы понять Вселенную на самом глубоком уровне, нам нужно знать не только как она себя проявляет, но и почему.

Почему есть что-то, вместо того чтобы не было ничего?

Почему мы существуем?

Почему существует именно этот конкретный набор законов, а не какой-либо другой?

Это Главный вопрос Жизни, Вселенной и Всего такого. Мы попытаемся ответить на него в этой книге. В отличие от фантастического романа английского писателя Дугласа Адамса «Автостопом по галактике», где на все сложные вопросы давался универсальный, но бессмысленный ответ «42», наш ответ не будет столь примитивным.

2. Верховенство закона

Сколль имя Волка,

за солнцем бежит он

до самого леса;

а Хати другой,

Хродвитнира сын,

предшествует солнцу.

    Старшая Эдда.

    Речи Гримнира

В мифологии викингов волки Сколль и Хати гонялись за солнцем и луной. Когда кто-либо из них достигал своей цели, случалось затмение. Тогда люди спешили на помощь солнцу или луне, поднимая страшный шум в надежде, что он отпугнет волков. Похожие мифы есть и в других культурах. По прошествии времени люди наверняка заметили, что солнце и луна вновь появляются после затмения независимо от того, бегали они, крича и стуча во что попало, или нет. Они также не могли не заметить, что затмения происходят не спонтанно, а периодически, следуя какому-то правилу. Это было особенно очевидно для лунных затмений, что позволяло древним вавилонянам довольно точно их предсказывать, даже несмотря на то что они не знали, как происходит затмение: Земля перекрывает свет Солнца, падающий на Луну. Предсказывать же солнечные затмения было труднее, поскольку они видны с Земли лишь в пределах сравнительно узкой полосы шириной около тридцати миль. И все же подмеченные особенности ясно указывали, что затмения происходят не по произволу сверхъестественных сил, а подчинены закономерностям.

Затмение. В древности люди не знали, что? является причиной затмений, но они подметили закономерности их повторения.

Несмотря на первые удачные попытки предсказаний движения небесных тел, большинство явлений природы казалось нашим предкам непредсказуемым. Извержения вулканов, землетрясения, бури, эпидемии и вросшие ногти на ногах – все это случалось вроде бы без всяких причин и закономерностей. В древности разрушительные явления природы обычно связывали с деятельностью вредных и злых божеств. Бедствия часто воспринимались как знак того, что люди чем-то прогневали богов. Например, около 5600 г. до н. э. вулкан Маунт-Мазама в Орегоне (США) начал извергаться, выбрасывая камни и горячий пепел. Это длилось на протяжении нескольких лет, вызывая обильные дожди, которые в конце концов заполнили кратер вулкана водой, образовав там озеро, нынешнее Крейтер-Лейк. У орегонских индейцев племени кламат есть легенда, в которой подробно описаны все геологические события, связанные с этим явлением, а также добавлено немного драматизма, чтобы представить виновником катастрофы человека. Присущее людям чувство вины таково, что им нужно лишь найти повод для самообвинения. Легенда говорит, что вождь Нижнего мира, Ллао, влюбился в прекрасную земную девушку, дочь вождя кламатов. Она отвергла его, и в отместку Ллао попытался уничтожить кламатов огнем. К счастью, согласно легенде, Скелл, вождь Верхнего мира, пожалел людей и сразился со своим подземным соперником. После битвы раненый Ллао скрылся в недрах горы Мазама, оставив за собой огромную яму – кратер, который впоследствии заполнился водой.

Не зная законов природы, древние люди вынуждены были придумывать богов, управлявших различными сторонами человеческой жизни. Были боги любви и войны, солнца, земли и неба, океанов и рек, дождя, грома и даже землетрясений и вулканов. Когда боги пребывали в хорошем настроении, они посылали людям благоприятную погоду, мир, оберегали их от стихийных бедствий и болезней. Когда же боги гневались, начинались засухи, войны, мор и эпидемии. Поскольку связь причины и следствия в природе оставалась невидимой для людских глаз, то боги казались им непостижимыми, и люди уповали на их милосердие. Но начиная с Фалеса Милетского (ок. 625 – ок. 546 до н. э.), то есть примерно 2600 лет назад, этот взгляд на мир стал меняться. Появилась мысль, что природа подчиняется незыблемым принципам, которые можно расшифровать. Так начался долгий процесс замены понятия о власти богов на концепцию Вселенной, управляемой законами природы и созданной по замыслу, который мы когда-нибудь сумеем разгадать.

По сравнению с продолжительностью истории человечества научное исследование представляет собой совершенно новый, недавно принятый подход. Люди зародились в Африке, к югу от Сахары, примерно за 200 000 лет до нашей эры. Письменность появилась лишь около 7000 г. до н. э. Она возникла в обществах, занимавшихся культивированием зерна (некоторые из древнейших текстов касаются дневной нормы пива, дозволяемой каждому жителю). Самые ранние записи великой цивилизации Древней Греции восходят к IX веку
Страница 3 из 10

до н. э., но расцвет этой цивилизации, ее «классический период», наступил несколько столетий спустя, начавшись около 500 г. до н. э. Согласно Аристотелю (384–322 до н. э.), примерно в это время Фалес впервые выдвинул идею о том, что мир можно понять, что сложные события вокруг нас можно свести к простым принципам и объяснить, не прибегая к мифологическим или теологическим толкованиям.

Принято считать, что Фалес первым предсказал солнечное затмение в 585 г. до н. э., хотя его предсказание получилось точным, вероятно, лишь по счастливой случайности. Он был скрытным человеком и не оставил о себе почти никаких свидетельств. Его дом являлся одним из интеллектуальных центров Ионии – области в Малой Азии, на восточном побережье Эгейского моря, которую заселили греки. Влияние Ионии постепенно распространилось от нынешней Турции на запад, вплоть до Италии. Ионийская наука с ее попыткой объяснить природные явления, открыть фундаментальные законы – гигантская веха в истории человеческой мысли. Ученые Ионии пытались рационально объяснить те или иные законы природы и во многих случаях пришли к заключениям, удивительно похожим на наши, сегодняшние, полученные с помощью иных, усложненных методов. Это было великое начало. Но несколько веков спустя о многих достижениях ионийской науки забыли и то, что уже было сделано, открывали и изобретали заново, иногда не один раз.

Иония. Ионийские ученые одними из первых стали объяснять природные явления законами природы, а не мифами или теологией.

Считается, что первая математическая формулировка того, что теперь мы могли бы назвать законом природы, принадлежит ионийцу Пифагору (ок. 580–490 до н. э.), прославившемуся теоремой, получившей его имя, которая гласит: квадрат гипотенузы (самой длинной стороны) прямоугольного треугольника равен сумме квадратов двух других его сторон (катетов). Считается, что Пифагор открыл численную зависимость между длиной струн музыкального инструмента и гармоническим рядом звуков. На современном языке мы бы описали это соотношение, сказав, что частота колебаний – количество вибраций в секунду – у струны, вибрирующей при фиксированном натяжении, обратно пропорциональна длине струны. С практической точки зрения это объясняет, почему более короткие гитарные струны дают более высокий тон, чем те, которые длиннее. Вполне вероятно, что на самом деле это открытие не принадлежит Пифагору (как и формулировка теоремы, носящей его имя), но есть свидетельства, что про определенную зависимость между длиной струны и высотой тона в его время было известно. А если так, то эту простую математическую формулу можно считать первым этапом того, что мы сегодня называем теоретической физикой.

Кроме закона Пифагора о струнах в правильном виде древним были известны лишь три закона, установленные Архимедом (ок. 287–212 до н. э.), который несомненно являлся самым выдающимся физиком Античности. В сегодняшней терминологии закон рычага гласит: малая сила может поднять большой вес потому, что рычаг увеличивает силу пропорционально отношению расстояний от точки опоры. Закон плавучести утверждает, что на любой предмет, погруженный в жидкость, действует выталкивающая сила, равная весу вытесненной жидкости. А закон отражения устанавливает, что угол между падающим лучом света и зеркалом равен углу между зеркалом и отраженным лучом. Но Архимед не называл это законами, как и не обосновывал их ссылками на наблюдения и измерения. Вместо этого он относился к ним так, будто это были вполне очевидные математические теоремы типа аксиом, являющиеся частью системы, не требующей доказательств – весьма похожей на ту, что создал Евклид для геометрии.

По мере распространения ионийского влияния появлялись и другие ученые, понимавшие, что во Вселенной есть внутренний порядок, который можно распознать путем наблюдений и умозаключений. Анаксимандр (ок. 610 – ок. 546 до н. э.), друг и, возможно, ученик Фалеса, говорил: поскольку новорожденный человек беспомощен, то если бы первый человек каким-то образом появился на Земле младенцем, он бы не выжил. Своим, пожалуй, первым в истории человечества намеком на эволюцию Анаксимандр аргументировал, что люди должны были развиться из других животных, чьи детеныши более приспособлены к жизни.

На Сицилии Эмпедокл (ок. 483/84 – между 430 и 420 до н. э.) наблюдал, как используется клепсидра – устройство, иногда применявшееся в качестве черпака. Клепсидра представляет собой сферический сосуд с открытым горлышком и маленькими дырочками в днище. Когда ее погружали в воду, она наполнялась, а если горлышко затем закрывали, то клепсидру можно было вынуть из воды, и при этом вода из дырочек не вытекала. Эмпедокл заметил: если горлышко закрыть перед погружением, то клепсидра водой не наполняется. Из этого он заключил, что проникновению воды в сферу сквозь дырочки должно препятствовать нечто невидимое. Так он открыл материальную субстанцию, которую мы называем воздухом.

Примерно в то же время Демокрит (ок. 460 – между 380 и 370 до н. э.) из ионийской колонии в Северной Греции обдумывал, что же происходит, когда предмет разбивают или разрезают на части. Он утверждал, что этот процесс невозможно продолжать бесконечно. Демокрит высказал мысль о том, что все, включая живые существа, состоит из простейших частиц, которые более невозможно разрезать или разбить. Эти конечные частицы он назвал атомами – от греческого прилагательного, означающего «неделимый». Демокрит полагал, что любое материальное явление представляет собой результат столкновения атомов. По его теории, названной атомизмом, все атомы перемещаются в пространстве и, если их не трогать, могут двигаться по прямой бесконечно. Сегодня это называют законом инерции.

Революционную мысль, что мы лишь обычные обитатели Вселенной, а не особые существа, удостоенные чести находиться в ее центре, первым высказал Аристарх Самосский (ок. 310 – ок. 230 до н. э.), один из последних ученых Ионии. Из его расчетов уцелел лишь сложный геометрический анализ тщательно выполненных им наблюдений за величиной земной тени на Луне во время лунных затмений. Из этих данных Аристарх сделал вывод, что Солнце должно быть намного больше Земли. Возможно, вдохновленный идеей о том, что мелкие объекты должны вращаться вокруг огромных, а не наоборот, он стал первым, кто заявил, что Земля не представляет собой центра нашей планетной системы, а скорее она и прочие планеты вращаются вокруг гораздо более крупного Солнца. От понимания того, что Земля всего лишь одна из планет, оставался только шаг до мысли, что наше Солнце тоже не представляет собой ничего исключительного. Аристарх подозревал, что это именно так, и полагал, что звезды, которые мы видим на ночном небе, в действительности не что иное, как удаленные солнца.

Ученые Ионии были представителями одной из многих философских школ Древней Греции, имевших свои собственные традиции, зачастую противоречившие другим школам. К сожалению, подход ионийской школы к природным явлениям, состоявший в том, что их можно объяснить общими законами и свести к простому набору принципов, имел сильное влияние на протяжении всего лишь нескольких столетий. Одной из причин этого было то, что в ионийских
Страница 4 из 10

теориях зачастую не находилось места для таких понятий, как «свобода воли» или «предназначение», либо для концепции об участии богов в делах мира. Эти поразительные упущения вызывали у многих греческих мыслителей столь же глубокое беспокойство, как и у многих людей сегодня. Философ Эпикур (341–270 до н. э.), например, выступал против атомизма на том основании, что «лучше следовать мифам о богах, чем стать „рабом“ удела натурфилософов». Аристотель тоже отвергал концепцию атомов, так как не мог допустить, что люди состоят из мертвых, неодушевленных объектов. Предположение ионийских ученых, что человек не является центром Вселенной, – это веха в нашем понимании космоса, но оно было отброшено и не подхвачено снова еще почти двадцать столетий, вплоть до Галилео Галилея.

Хотя большинство идей древних греков было столь же проницательно, как и некоторые их догадки о природе, в наши дни они не получили бы статуса действительно научных. Поскольку греки не разработали научного метода, их теории строились без расчета на экспериментальную проверку. Поэтому если один ученый утверждал, что атом движется по прямой, пока не столкнется с другим атомом, а другой ученый утверждал, что атом движется по прямой, пока не ударится в циклопа, то не было объективного пути уладить их спор. Не было также и четкого различия между физическими законами и законами человеческого существования. В V веке до н. э., например, Анаксимандр писал, что все сущее происходит из первовещества и возвращается в него же, чтобы «заплатить штраф и понести наказание за свои злодеяния». А ионийский философ Гераклит (ок. 540 – ок. 480 до н. э.) считал, что Солнце ведет себя так, а не иначе, потому что оно боится наказания богини справедливости. Несколько столетий спустя стоики (приверженцы греческой философской школы, возникшей примерно в III веке до н. э.) наконец провели границу между законами природы и нормами поведения людей, но к законам природы они отнесли и те нормы поведения людей, которые считали универсальными, например поклонение богам и послушание родителям. И наоборот, они часто описывали физические процессы юридическими терминами и полагали, что к исполнению физических законов следует принуждать, даже если объекты, которые должны «подчиняться» законам, являются неодушевленными. Но если уж людей трудно заставить соблюдать правила дорожного движения, то представьте себе, каково это – убедить астероид двигаться по эллипсу.

Эта традиция на протяжении еще многих столетий продолжала оказывать влияние на мыслителей, пришедших на смену грекам. В XIII веке христианский философ Фома Аквинский (ок. 1225–1274) принял такую же точку зрения и использовал ее для доказательства бытия Бога. Он писал: «Все в природе движется к своей конечной цели не случайно, а по какому-то намерению… И стало быть, имеется разумное существо, которое направляет все, что есть в природе, к конечной цели…» Даже уже в XVI веке великий немецкий астроном Иоганн Кеплер (1571–1630) все еще полагал, что планеты способны воспринимать смысл и осознанно следуют законам движения, которые были усвоены их «умом».

Понимание того, что законам природы нужно осознанно повиноваться, отражает сосредоточенность древних мыслителей на том, почему природа ведет себя именно таким образом, как это имеет место быть, а не на том, как она себя ведет. Аристотель, отвергавший идею о науке, основанной преимущественно на наблюдении, был одним из главных сторонников такого подхода. В любом случае выполнение точных измерений и математических расчетов в древности было затруднительным. Позиционная десятичная система счисления, которую мы полагаем весьма удобной для арифметических вычислений, появилась лишь около 700 года, когда индийцы сделали первые значительные шаги к превращению этого способа в мощный инструмент. До XV века не было математических знаков плюс и минус. А знака равенства и часов, способных измерять время с точностью до секунды, не существовало вплоть до XVI века.

Однако Аристотель в измерениях и расчетах не видел препятствий для развития физики, которая могла бы давать количественные прогнозы. Скорее, он не считал нужным производить их. Вместо этого Аристотель построил свою физику на принципах, привлекавших его интеллектуально. Он отбрасывал факты, которые считал маловажными, и сосредотачивал свои усилия на причинах, в силу которых что-либо происходит, не уделяя достаточного внимания детальному выяснению того, что же именно происходит. Аристотель уточнял свои умозаключения только тогда, когда их вопиющее несоответствие наблюдениям уже нельзя было игнорировать. Но эти уточнения зачастую были объяснениями для какого-либо конкретного случая, позволявшими лишь сгладить противоречие. Таким образом, как бы сильно его теория ни отклонялась от реальности, в каждом отдельном случае он мог изменить ее настолько, чтобы создать видимость отсутствия конфликта. Например, его теория движения утверждала, что тяжелые тела падают с постоянной скоростью, пропорциональной их весу. Чтобы объяснить тот факт, что тела по мере падения явно набирают скорость, он придумал новый принцип, согласно которому тела, по мере того как они приближаются к своему естественному месту покоя, движутся более радостно и потому ускоряются. Сегодня подобный принцип выглядит более подходящим для описания людей, чем неодушевленных объектов. Хотя теории Аристотеля зачастую имели малую ценность для предсказаний, его подход к науке господствовал в западном мышлении почти две тысячи лет.

Христианские преемники греков отвергли мысль о том, что Вселенная управляется бездушными законами природы, а также то, что люди не занимают привилегированного места во Вселенной. И хотя в Средние века не было единой стройной философской системы, считалось, что Вселенная – это игрушечный домик Бога, а религия гораздо более достойна изучения, чем природные явления. И в самом деле, в 1277 году епископ Парижский Темпье, действуя по указанию Папы Римского Иоанна XXI, обнародовал список 219 заблуждений, или ересей, которые подлежали осуждению. Среди них была и мысль о том, что природа подчиняется своим законам. В список она попала за то, что противоречила суждению о всемогуществе Бога. Любопытно, что несколько месяцев спустя Иоанн XXI погиб из-за действия закона тяготения – на него обрушилась крыша его дворца.

Современное представление о законах природы появилось в XVII веке. Кеплер был, пожалуй, первым ученым, понимавшим этот термин в его современном значении, хотя, как мы уже сказали, он придерживался анимистического взгляда на физические объекты, то есть верил в их одушевленность. Итальянский естествоиспытатель Галилео Галилей (1564–1642) в большинстве своих научных работ не использовал термин «закон» (хотя он и появляется в некоторых переводах его трудов). Независимо от того, употреблял он этот термин или нет, Галилей открыл великое множество законов и отстаивал важные принципы, считая, что наблюдения составляют основу науки и что цель науки – исследование количественных отношений, существующих между физическими явлениями. Но первым, кто четко и строго сформулировал понятие законов природы в нашем нынешнем представлении, стал французский
Страница 5 из 10

ученый Рене Декарт (1596–1650).

«За время своего долгого царствования я понял: становится жарче».

Декарт полагал, что все физические явления следует объяснять в терминах столкновения движущихся масс, управляемых тремя законами – предтечами знаменитых ньютоновских законов движения. Он утверждал, что эти законы природы действуют всегда и везде, и категорично заявлял, что подчинение им не предполагает наличия разума у этих движущихся масс. Декарт также понял важность того, что мы сегодня называем начальными условиями. Они описывают состояние системы в начале какого-то интервала времени, на который намереваются сделать прогноз. При данном наборе начальных условий законы природы определяют, как система будет развиваться во времени, а вот без определенного набора начальных условий развитие предсказать невозможно. Если, например, в нулевой момент времени голубь прямо у вас над головой кое-что роняет, путь этого падающего объекта определяется законами Ньютона. Но результат будет совершенно разным в зависимости от того, сидел ли голубь в нулевой момент времени на телефонном проводе или летел со скоростью 20 миль в час. Чтобы применять физические законы, нужно знать, с чего система стартовала, или, по крайней мере, ее состояние в определенное время. (Законы могут быть также использованы и для прослеживания системы обратно во времени.)

С возобновленной верой в существование законов природы появились и новые попытки примирить эти законы с понятием о Боге. Согласно Декарту, Бог может по своей воле изменить истинность или ложность этических суждений или математических теорем, но не природу. Декарт полагал, что Бог установил законы природы, но не имел возможности их выбирать. Он взял их потому, что законы, которые мы ощущаем, являются единственно возможными. Такой подход мог показаться ущемлением могущества Бога, но Декарт обошел это затруднение, заявив, что законы нельзя изменить, потому что они – отражение внутренней природы Бога. Если это так, то можно было бы подумать, что Бог все-таки имел возможность сотворить множество различных миров, каждому из которых соответствовал бы собственный набор начальных условий. Но Декарт отверг и это. Независимо от того, каким было состояние материи при зарождении Вселенной, утверждал он, с течением времени образовался бы мир, идентичный нашему. Более того, Декарт понимал, что как только Бог привел мир в движение, то сразу же предоставил его самому себе.

Подобную позицию (с некоторыми отличиями) разделял английский физик и математик Исаак Ньютон (1643–1727). Благодаря своим трем законам движения и закону тяготения Ньютон обеспечил современному понятию научного закона повсеместное восприятие. Его законы используются для расчета орбит Земли, Луны и планет и объясняют такие явления, как приливы. Те немногие уравнения, которые он разработал, и детально развитая нами впоследствии на их основе математическая структура до сих пор преподаются и широко используются – проектирует ли архитектор здание, конструирует ли инженер автомобиль, выполняет ли физик расчеты параметров полета ракеты, которая должна достичь Марса. Как сказал английский поэт Александр Поуп:

Природу и ее законы мрак беспросветный сокрывал.

Бог произнес: «Да будет Ньютон!» – и свет над миром воссиял[1 - Перевод Г. А. и Т. Б. Бурба.].

Сегодня большинство ученых сказали бы, что закон природы – это правило, основанное на наблюдаемой повторяемости и обеспечивающее прогнозы, выходящие за пределы тех непосредственных ситуаций, на которых оно основывается. Например, мы могли бы заметить, что каждое утро в нашей жизни солнце восходит на востоке, и сформулировать закон: «Солнце всегда восходит на востоке». Это обобщение выходит за пределы наших ограниченных наблюдений восходящего солнца и дает проверяемый прогноз на будущее. С другой стороны, такое утверждение, как «Компьютеры в нашем офисе черные», не является законом природы, ибо относится только к компьютерам в пределах офиса и не дает прогнозов, подобных, например, такому: «Если наш офис купит новый компьютер, он будет черным».

Современное понимание термина «закон природы» является вопросом, который обсуждается философами на протяжении длительного времени, и это более тонкий вопрос, чем может показаться на первый взгляд. Например, современный американский философ Джон Кэрролл сравнил утверждение «У всех золотых шаров диаметр меньше мили» с утверждением «У всех шаров из урана-235 диаметр меньше мили». Наши наблюдения за окружающим миром свидетельствуют, что не существует золотых шаров поперечником больше мили, и мы можем быть вполне уверены, что их никогда не будет. И все же у нас нет основания полагать, что их не может быть вовсе, поэтому такое утверждение не считается законом. С другой стороны, утверждение «У всех шаров из урана-235 диаметр меньше мили» может считаться законом природы, так как, согласно нашим знаниям по ядерной физике, если шар из урана-235 достигнет размеров больше шести дюймов в диаметре, он сам себя уничтожит ядерным взрывом. Следовательно, мы можем быть уверены, что таких шаров не существует (а предложение попытаться сделать подобный шар нельзя отнести к хорошим идеям). Это важное различие, так как оно наглядно показывает, что не все обобщения, выведенные из наших наблюдений, можно считать законами природы и что большинство законов природы существует как часть более крупной системы взаимосвязанных законов.

В современной науке законы природы обычно выражаются математически. Они могут быть точными или приближенными, но должны основываться на проведенных наблюдениях и неукоснительно соблюдаться – если не всегда и везде, то, по крайней мере, при оговоренном перечне условий. Например, теперь мы знаем, что законы Ньютона должны быть изменены, если объекты перемещаются со скоростями, близкими к скорости света. И все же мы считаем, что законы Ньютона остаются законами, поскольку они соблюдаются, по крайней мере с хорошей степенью приближения, в условиях повседневной жизни, где мы имеем дело со скоростями много ниже скорости света.

Если природой управляют законы, то возникает три вопроса:

1) Каково происхождение этих законов?

2) Бывают ли исключения из этих законов, то есть чудеса?

3) Имеется ли только один набор возможных законов?

Эти важные вопросы в той или иной форме ставили перед собой ученые, философы и теологи. Традиционный ответ на первый вопрос – ответ Кеплера, Галилея, Декарта и Ньютона – состоял в том, что эти законы созданы Богом. Однако это не более чем определение Бога как воплощения законов природы. Если только не наделить Бога некоторыми другими признаками, например присущими Богу Ветхого Завета, то обращение к Богу для ответа на первый вопрос лишь заменяет одну загадку на другую. Поэтому если мы прибегаем к Богу, отвечая на первый вопрос, то со вторым вопросом, касающимся чудес, исключений из законов, – настоящая беда.

«Думаю, второй шаг вам нужно проработать глубже».

Мнения относительно ответа на второй вопрос резко разделились. Платон и Аристотель, самые влиятельные древнегреческие авторы, считали, что из законов не может быть исключений. Но если принять точку зрения Библии,
Страница 6 из 10

то Бог не только создал законы – к нему можно воззвать в молитве с просьбой сделать исключение: вылечить смертельно больного, досрочно прекратить засуху или снова включить крокет в список олимпийских видов спорта. В противовес мнению Декарта почти все христианские мыслители утверждали, что Бог должен быть способен приостановить действие законов, чтобы совершать чудеса. Даже Ньютон верил в подобные вещи. Он считал, что орбиты планет должны быть нестабильны, поскольку гравитационное притяжение одной планеты к другой влечет за собой искажение орбит, которое со временем будет увеличиваться и приведет к тому, что планеты либо упадут на Солнце, либо улетят из Солнечной системы. Он полагал, что Бог должен постоянно поправлять орбиты – «заводить небесные часы, чтобы они шли без остановки». Однако французский математик и астроном Пьер Симон маркиз де Лаплас (1749–1827), более известный просто как Лаплас, утверждал, что подобные деформации орбит должны быть периодическими, то есть происходить в виде повторяющихся циклов, а не накапливаться. Таким образом, Солнечная система способна сама перезапускаться и нет нужды в Божественном вмешательстве для объяснения, почему она сохранилась по сей день.

Считается, что именно Лаплас первым четко сформулировал принцип научного детерминизма: учитывая состояние Вселенной в некое время, полный набор законов определяет как будущее, так и прошлое. Это исключало бы возможность чудес и активную роль Бога. Принцип научного детерминизма, сформулированный Лапласом, является ответом современного ученого на второй вопрос. Фактически этот принцип служит основой всей современной науки, и именно к нему привлекается внимание на протяжении всего нашего повествования. Научный закон не является таковым, если он выполняется только до тех пор, пока не решит вмешаться какое-либо сверхъестественное существо. Говорят, что Наполеон, признавая это, спросил Лапласа, как в такую картину вписывается Бог. Лаплас ответил: «Сир, я не нуждался в этой гипотезе». Поскольку люди живут во Вселенной и взаимодействуют с другими объектами в ней, то принцип научного детерминизма должен выполняться также и для людей. Однако многие, признавая, что физические процессы подчиняются принципу научного детерминизма, делают исключение для человеческого поведения, поскольку верят, что мы обладаем свободой воли. Декарт, например, чтобы сохранить идею о свободе воли, заявил, что человеческий разум – это нечто отличное от физического мира и не подчиняется его законам. По его мнению, человек состоит из двух частей – тела и души. Тело – это не что иное, как механизм, а вот душа не является предметом, имеющим отношение к научным законам. Декарт очень интересовался анатомией и психологией и считал вместилищем души крошечный орган в мозге – эпифиз, или шишковидную железу. Он полагал, что именно в нем формируются все наши мысли, а значит, он и есть источник свободы воли.

Обладают ли люди свободой воли? Если у нас есть свобода воли, то на каком этапе эволюции она возникла? Есть ли свобода воли у синезеленых водорослей и бактерий, или же их поведение непроизвольно и они находятся во власти научных законов? Только ли многоклеточные организмы обладают свободой воли? Или лишь млекопитающие? Мы можем допустить, что свободу воли проявляет шимпанзе, когда решает перекусить бананом, или кошка, когда дерет ваш диван. Но что можно сказать о круглых червях Caenorhabditis elegans – простейших существах, состоящих всего из 959 клеток? Пожалуй, они никогда не подумают: «Чертовски вкусная бактерия попалась мне вон там давеча на обед», – но тем не менее и они тоже имеют определенные предпочтения в еде и либо согласятся на непривлекательную пищу, либо отправятся добывать что-нибудь повкуснее – в зависимости от недавнего опыта. Можно ли это считать проявлением свободы воли?

Хотя мы думаем, что способны делать осознанный выбор, наши познания в области молекулярных основ биологии свидетельствуют, что биологические процессы подчиняются законам физики и химии, а потому столь же детерминированы, как и орбиты планет. Недавние эксперименты в области неврологии подтверждают мнение о том, что наши поступки определяются нашим мозгом, который подчиняется известным научным законам, а не какой-то силе, существующей вне этих законов. Например, наблюдения за пациентами с поражением головного мозга показали, что путем электростимуляции соответствующих участков мозга можно вызвать у больного желание сделать движение кистью руки, плечом, ступней или открыть рот и что-то сказать. Трудно себе представить, как может проявляться свобода воли, если наше поведение определяется физическими законами. Поэтому, похоже, мы представляем собой не что иное, как биологические машины, а свобода воли просто иллюзия.

Если считать, будто поведение людей действительно подчиняется законам природы, то кажется разумным следующий вывод: результат определяется столь сложно и со столь многими вариациями, что делать какие-либо прогнозы практически невозможно. Для этого нужно знать начальное состояние каждой из тысячи триллионов триллионов молекул человеческого тела и решить такое же количество уравнений. Это займет не один миллиард лет, и мы несколько запоздаем уклониться от удара, который намеревается нанести нам стоящий рядом человек.

Поскольку крайне непрактично использовать для предсказания человеческого поведения основополагающие физические законы, мы придерживаемся так называемой эффективной теории. Эффективная теория в физике – это каркас, созданный, чтобы моделировать определенные наблюдаемые явления, не описывая в деталях лежащие в их основе процессы. Например, мы не можем точно решить уравнения, управляющие гравитационными взаимодействиями каждого атома в человеческом теле с каждым атомом Земли. Но для всех практических целей гравитационное взаимодействие человека с Землей можно описать всего лишь несколькими числами, например числом, определяющим массу тела человека. Мы также не можем решить уравнения, определяющие поведение сложных атомов и молекул, но мы разработали эффективную теорию под названием химия, которая дает достаточно полное объяснение того, как атомы и молекулы ведут себя в химических реакциях, без рассмотрения всех подробностей их взаимодействий. Поскольку мы не в состоянии решить уравнения, определяющие наше поведение, то применительно к человеку пользуемся эффективной теорией о том, что люди обладают свободой воли. Изучением нашей воли и зависящего от нее поведения занимается наука психология. Экономика – это тоже эффективная теория, основанная на понятии «свобода воли» и предположении о том, что люди оценивают возможные альтернативные способы действия и выбирают наилучший. Эта эффективная теория не всегда может предсказать поведение системы, потому что, как известно, решения зачастую нерациональны или основаны на ошибочном анализе последствий нашего выбора. Вот почему в мире такой кавардак.

Третий вопрос касается того, уникальны ли законы, определяющие поведение Вселенной и человека. Если на первый вопрос вы ответили, что законы создал Бог, то теперь спрашивается: было ли у Бога разнообразие при
Страница 7 из 10

выборе этих законов? Аристотель, Платон и Декарт, а позднее и Эйнштейн полагали, что законы природы существуют «по необходимости», то есть потому, что они – единственные правила, имеющие логический смысл. Веря в изначальную логичность законов природы, Аристотель и его последователи понимали, что можно вывести эти законы, не обращая особого внимания на то, как в действительности ведет себя природа. Эта вера и акцент на вопросе, почему объекты подчиняются правилам, а не на том, каковы сами эти правила, привели Аристотеля к открытию преимущественно качественных законов, которые часто оказывались ошибочными и в любом случае были не особенно полезными, хотя и господствовали в научном мире много столетий. Уже гораздо позже такие люди, как Галилей, осмелились бросить вызов авторитету Аристотеля и стали наблюдать за действительным поведением природы, а не за тем, что велит ей делать «причина» как таковая.

Эта книга основывается на концепции научного детерминизма, который предполагает, что ответ на второй вопрос таков: не бывает чудес, то есть исключений из законов природы. Тем не менее мы вернемся ко второму и третьему вопросам, чтобы поглубже разобраться в том, откуда взялись законы природы и являются ли они единственно возможными. Но сначала, в следующей главе, мы рассмотрим, что же описывают законы природы. Большинство ученых сказали бы, что законы представляют собой математическое отражение внешней реальности, существующей независимо от наблюдателя, который ее видит. Но если мы задумаемся над способом, которым мы проводим наблюдения и которым формируем концепцию о том, что нас окружает, то есть ли у нас причина верить, будто объективная реальность существует?

3. Что такое реальность?

В итальянском городе Монца несколько лет назад муниципальный совет запретил жителям держать золотых рыбок в шаровидных аквариумах. Инициатор этой меры объяснил запрет тем, что держать рыбку в сосуде с изогнутыми стенками жестоко, потому что, глядя наружу, рыбка видит искаженную картину реальности. Но откуда нам знать, видим ли мы сами истинную, а не искаженную картину реальности? Разве нельзя предположить, что и мы находимся внутри некоего большого искривленного аквариума и видим всё искаженным огромной линзой? Картина реальности с точки зрения золотой рыбки отличается от нашей, но можем ли мы утверждать, что она менее реальна, чем наша?

Золотая рыбка видит мир не таким, как мы, тем не менее она тоже могла бы сформулировать законы, управляющие движением предметов, которые видит за пределами своего аквариума. Например, свободно движущийся предмет, который для нас перемещается по прямой, для золотой рыбки движется по кривой вследствие искажения вида выпуклыми стенками аквариума. Тем не менее рыбка могла бы сформулировать научные законы в своей искаженной системе отсчета, и они всегда будут выполняться, что позволит предсказывать движение предметов вне аквариума. Эти законы будут сложнее, чем в нашей системе отсчета, но простота – дело вкуса. Если бы золотая рыбка сформулировала такую теорию, то нам пришлось бы признать ее ви?дение реальности столь же правомерным, как наше.

Знаменитый пример различных картин реальности – модель, введенная около 150 года древнегреческим ученым Клавдием Птолемеем (ок. 90 – ок. 160) для описания движения небесных тел. Птолемей опубликовал свою работу в тринадцатитомном трактате, широко известном под его арабским названием «Альмагест» («Великая книга»). «Альмагест» начинается с объяснения причин, позволяющих считать Землю сферической, неподвижной, расположенной в центре Вселенной и ничтожно малой по сравнению с расстоянием до небес. Несмотря на существование гелиоцентрической модели Аристарха, взглядов Птолемея придерживалось большинство образованных греков, по крайней мере со времен Аристотеля, который по мистическим соображениям считал, что Земля должна находиться в центре Вселенной. В модели Птолемея неподвижная Земля расположена в центре, а планеты и звезды движутся вокруг нее по сложным орбитам, как колеса, катящиеся по колесам, – совершая движение по малому кругу (эпициклу), передвигающемуся по большому кругу, в центре которого и находится Земля.

Вселенная Птолемея. Птолемей полагал, что мы находимся в центре Вселенной.

Такая модель казалась естественной, так как мы не чувствуем, что Земля у нас под ногами движется (разве что при землетрясениях или в моменты страсти). Впоследствии европейское обучение основывалось на сохранившихся греческих источниках, так что идеи Аристотеля и Птолемея стали в значительной степени основой для западной мысли. Птолемеева модель космоса была принята Католической церковью и сохранялась как официальная доктрина в течение четырнадцати веков. Только в 1543 году появилась альтернативная модель, которую выдвинул польский астроном Николай Коперник (1473–1543) в своей книге «De revolutionibus orbium coelestium» («О вращениях небесных сфер»), опубликованной лишь в год его смерти (хотя разрабатывал он свою теорию в течение нескольких десятилетий).

Коперник, как и Аристарх почти за семнадцать веков до него, описал мир, в котором Солнце пребывало в покое, а планеты двигались вокруг него по круговым орбитам. Хотя идея была не нова, ее возрождение было встречено яростным сопротивлением. Модель Коперника сочли противоречащей Библии, ссылаясь на то, что в Библии говорится о движении планет вокруг Земли, хотя нигде в ней об этом четко не сказано. На самом же деле в то время, когда была написана Библия, люди считали, что Земля плоская. Модель Коперника вызвала ожесточенные дебаты о том, неподвижна ли Земля. Кульминацией этих дебатов стал в 1633 году суд над обвиненным в ереси Галилео Галилеем, который защищал модель Коперника и считал, «что допустимо иметь мнение и отстаивать его как возможное, после того как было установлено и объявлено, что оно противоречит Священному Писанию». Галилей был признан виновным, приговорен к пожизненному домашнему аресту и принужден высказать отречение от своих взглядов. По преданию, он прошептал: «Eppur si muove» («И все-таки она вертится»). В 1992 году Римско-католическая церковь наконец признала, что была не права в осуждении Галилея.

Так что же соответствует реальности – система Птолемея или Коперника? Нередко говорят, что Коперник доказал неправоту Птолемея, но это неверно. Как и в случае сравнения нашего нормального взгляда на мир со взглядом золотой рыбки, любая из двух картин может считаться моделью Вселенной, поскольку объяснить то, что мы наблюдаем на небе, можно, допуская неподвижность как Земли, так и Солнца. Помимо той роли, которую система Коперника сыграла в философских дебатах о природе нашей Вселенной, ее бесспорное преимущество уже в том, что в рамках системы с неподвижным Солнцем уравнения движения оказываются намного проще.

Альтернативная реальность другого типа представлена в фантастическом фильме «Матрица», где люди, сами того не осознавая, живут в смоделированной виртуальной реальности, созданной компьютерами с искусственным интеллектом для того, чтобы поддерживать людей умиротворенными и довольными, в то время как компьютеры подпитываются от них биоэлектрической энергией (кто его
Страница 8 из 10

знает, что это такое!). Возможно, это не так уж далеко от реальности, поскольку многие из нас предпочитают проводить свое время в искусственно созданной реальности на веб-сайтах вроде «Second Life» («Вторая жизнь»). А как мы можем узнать, не являемся ли мы сами всего лишь персонажами в сериале, сочиненном компьютером, подобно герою Джима Кэрри в фильме «Шоу Трумана»? Если бы мы жили в искусственном, воображаемом мире, события необязательно были бы логически связанными, необязательно подчинялись бы законам. Инопланетянам, управляющим таким миром, было бы интереснее наблюдать за нашими действиями в такой, например, ситуации, когда полная Луна расколется пополам или когда всех сидящих на диете охватит неодолимая тяга к тортам с банановым кремом. Но если бы инопланетяне действовали строго по законам, то было бы невозможно определить, что существует другая реальность, скрытая за искусственно созданной. Мы с легкостью могли бы назвать мир, где живут инопланетяне, реальным, а мир, созданный с помощью компьютеров, – ложным. Но если, подобно нам, существа в искусственно созданном мире не могут взглянуть на свою вселенную со стороны, то у них не будет причины для того, чтобы усомниться в собственных картинах реальности. Таков современный вариант представления о том, что все мы являемся персонажами в чьем-то сне.

Эти примеры приводят нас к заключению, которое будет важным в данной книге: не существует концепции реальности, не зависящей от картины мира, или от теории. Мы же вместо этого примем точку зрения, которую станем называть моделезависимым реализмом, – идею о том, что любая физическая теория, или картина мира, представляет собой модель (как правило, математической природы) и набор правил, соединяющих элементы этой модели с наблюдениями. Это дает основу для интерпретации современных научных данных.

Начиная с Платона философы веками спорили о природе реальности. Классическая наука основывается на вере, что существует реальный внешний мир, свойства которого вполне определены и не зависят от наблюдателя, который их постигает. Согласно классической науке, в мире существуют объекты, у них есть физические свойства, такие как скорость и масса, которые обладают четко определенными значениями. С этой точки зрения наши теории представляют собой попытки описать эти объекты и их свойства, а наши измерения и восприятия соответствуют им. И наблюдатель, и наблюдаемый объект – части объективно существующего мира, и любое различие между ними не имеет решающего значения. Иными словами, если вы видите стадо зебр, дерущихся за место в гараже, это происходит потому, что это действительно стадо зебр, дерущихся за место в гараже. Все остальные наблюдатели увидят такие же свойства, а стадо будет иметь те же самые характеристики независимо от того, наблюдают за ним или нет. В философии эту веру называют реализмом. Хотя реализм может быть заманчивой точкой зрения, но, как мы увидим далее, то, что нам известно о современной физике, вызывает трудности в его отстаивании. Например, согласно принципам квантовой физики, которая является точным описанием природы, частица не имеет ни определенного положения, ни определенной скорости, до тех пор пока эти величины не измерены наблюдателем. Стало быть, неправильно утверждать, что измерение дает определенный результат только потому, что измеряемая величина имела это значение во время измерения. На самом деле в некоторых случаях отдельные объекты даже не существуют сами по себе, а существуют лишь как часть ансамбля. И если теория, называемая голографическим принципом, окажется верной, то мы вместе с нашим четырехмерным миром можем оказаться лишь тенью на границе большего, пятимерного, пространства-времени. В этом случае наше положение во Вселенной буквально аналогично положению золотой рыбки внутри аквариума.

Строгие реалисты часто утверждают: доказательство того, что научные теории отображают реальность, состоит в их успешном применении. Но другие теории могут столь же успешно описывать подобные явления через совершенно иные концептуальные схемы. На деле многие научные теории, которые считались успешными, впоследствии были заменены другими столь же успешными теориями, основанными на совершенно иных концепциях реальности. Тех, кто не принимает реализма, обычно называли антиреалистами. Антиреалисты полагают, что есть различие между эмпирическим знанием и теоретическим. Они, как правило, заявляют: наблюдение и эксперимент значимы, а теории – это только полезные инструменты, которые не воплощают более глубоких истин, лежащих в основе наблюдаемых явлений. Некоторые антиреалисты даже хотели ограничить науку лишь тем, что доступно наблюдениям. Поэтому в XIX веке многие отвергали идею атомов на том основании, что мы никогда их не увидим. Английский философ Джордж Беркли (1685–1753) дошел даже до того, что заявил, будто не существует ничего, кроме сознания и мыслей. Когда один из друзей сказал английскому поэту и лексикографу доктору Сэмюэлу Джонсону (1709–1784), что утверждение Беркли невозможно опровергнуть, то в ответ Джонсон, как рассказывают, подошел к большому камню, пнул его и заявил: «Я опровергаю это». Конечно же, боль, которую доктор Джонсон ощутил в ноге, стала тоже лишь мыслью в его сознании, так что на самом деле идею Беркли он не опроверг. Но его действие проиллюстрировало точку зрения шотландского философа Дэвида Юма (1711–1776), который писал, что, хотя мы и не имеем рациональных оснований верить в объективную реальность, у нас все же не остается иного выбора, кроме как действовать так, будто она есть.

Моделезависимый реализм прекращает все эти споры и дискуссии между философскими школами реалистов и антиреалистов. Согласно моделезависимому реализму, не имеет смысла спрашивать, реальна или нет модель мира, важно одно: соответствует ли она наблюдениям. Если каждая из двух моделей соответствует наблюдениям (как картины мира золотой рыбки в аквариуме и наша), то нельзя сказать, что какая-то из них более реальна, чем другая. Можно использовать ту модель, которая удобнее в данной ситуации. Например, тому, кто оказался в сферическом аквариуме, больше подойдет модель мира золотой рыбки, а тому, кто снаружи, будет весьма затруднительно описывать события, происходящие в удаленной галактике, с точки зрения рыбки в аквариуме, который находится на Земле, тем более что аквариум будет двигаться, поскольку Земля перемещается по орбите вокруг Солнца и вращается вокруг своей оси.

«У вас много общего. Доктор Дэвис открыл частицу, которую никто никогда не видел, а профессор Хигби открыл галактику, которую тоже никто никогда не видел».

Мы создаем модели в науке, но также создаем их и в повседневной жизни. Моделезависимый реализм применим не только к научным моделям, но и к сознательным и подсознательным мысленным моделям, которые все мы создаем, чтобы интерпретировать и понять повседневность. Невозможно исключить наблюдателя – нас самих – из нашего восприятия мира, которое создается с помощью наших чувств и путем мышления и рассуждения. Наше восприятие (а следовательно, и наблюдения, на которых основываются наши теории) не является непосредственным, а формируется
Страница 9 из 10

своего рода линзой – способностью человеческого мозга к интерпретации.

Моделезависимый реализм находится в соответствии с нашим восприятием объектов. Когда мы видим что-то, мозг получает последовательные сигналы через оптический нерв. Эти сигналы не формируют целого образа, подобного тому, какой вы видите на экране телевизора. Есть слепое пятно, где оптический нерв соединяется с сетчаткой, и единственная часть вашего поля зрения с хорошим разрешением – это узкая область примерно в один градус угла зрения вокруг центра сетчатки, область шириной с ваш большой палец, если смотреть на расстоянии вытянутой руки. Так что исходные данные поступают в мозг в виде сильно размытой картинки, да еще и с дырой в ней. К счастью, человеческий мозг обрабатывает эти данные, объединяя информацию, получаемую от обоих глаз, и заполняет пробелы, интерполируя в предположении о том, что визуальные свойства соседних участков схожи. Более того, он считывает двухмерную совокупность данных с сетчатки и создает из нее образ в трехмерном пространстве. Иными словами, мозг строит мысленную картину, или модель.

Мозг настолько искусен в построении моделей, что если бы у людей были очки, которые переворачивают изображение вверх ногами, то их мозг через некоторое время изменил бы модель так, что они снова стали бы видеть мир неперевернутым. Если затем снять очки, то мир некоторое время будет видеться перевернутым, а потом снова произойдет адаптация. Это значит, что когда говорят: «Я вижу стул», то имеют в виду лишь свет, рассеянный стулом для создания мысленного образа, или модели, стула. Если модель перевернута, то можно надеяться, что мозг скорректирует ее, прежде чем человек попытается сесть на этот стул.

Другой проблемой, которую моделезависимый реализм решает или, по крайней мере, избегает, является толкование существования. Откуда мне знать, существует ли еще стол, если я вышел из комнаты и не вижу его? И что значит, когда говорят, будто вещи, которые мы не можем увидеть, существуют, например электроны или кварки (частицы, составляющие протоны и нейтроны)? Можно пользоваться моделью, в которой стол исчезает, когда я выхожу из комнаты, и снова появляется на том же месте, когда я возвращаюсь, но такая модель будет непрочной – ведь как быть, если во время моего отсутствия что-то случится, например обвалится потолок? Как эта модель со столом, исчезающим после моего ухода из комнаты, сможет объяснить тот факт, что при моем следующем появлении в комнате там возникнет сломанный стол, а на нем – куски штукатурки? Модель, в которой стол остается в комнате, гораздо проще и согласуется с наблюдениями. Вот и весь разговор. В случае с субатомными частицами, которые мы не можем видеть, электроны представляют собой удобную модель, объясняющую такие явления, как треки в камере Вильсона и пятнышки света на телевизионной трубке, а также многие другие явления. Электрон был открыт в 1897 году британским физиком Дж. Дж. Томсоном (1856–1940) из Кавендишской лаборатории Кембриджского университета. Он проводил опыты с электрическим током внутри пустых стеклянных трубок – это явление известно как катодные лучи. Опыты натолкнули его на смелую мысль о том, что таинственные лучи состоят из мельчайших корпускул, представляющих собой материальные элементы атомов, считавшихся в то время неделимыми фундаментальными единицами вещества. Томсон не видел электрон, и его догадка не была непосредственно или однозначно продемонстрирована в ходе опытов. Но предложенная им модель показала свою незаменимость в повсеместном применении – от фундаментальной науки до инженерных проектов, и сегодня все физики верят в электроны, несмотря на то что никто не может увидеть их.

Катодные лучи. Мы не можем увидеть отдельные электроны, но видим производимый ими эффект.

Кварки, которые мы также не можем увидеть, являются моделью для объяснения свойств протонов и нейтронов в ядре атома. Хотя считается, что протоны и нейтроны состоят из кварков, мы никогда не увидим кварка, поскольку сила, связывающая кварки, увеличивается при разделении, и поэтому отдельные, свободные, кварки в природе не могут существовать. Они объединены в группы из трех кварков (это протоны и нейтроны) или из кварка и антикварка (пи-мезоны) и ведут себя так, словно связаны резиновой лентой.

Вопрос о том, допустимо ли говорить, что кварки реально существуют, если невозможно выделить один кварк, обсуждался на протяжении нескольких лет, после того как впервые была предложена модель кварка. Представление о том, что определенные частицы состоят из разных комбинаций нескольких «суб-субъядерных частиц», привело к принципу, позволяющему дать простое и привлекательное объяснение их свойствам. Но, хотя физики привыкли признавать частицы, существование которых только предполагалось по статистическим всплескам в данных, относящихся к рассеянию других частиц, мысль о том, чтобы считать реальной частицу, которая в принципе ненаблюдаема, показалась многим выходящей за рамки допустимого. Однако годы спустя, когда модель кварков стала приводить ко все более точным предсказаниям, это сопротивление ослабло. Конечно, возможно, что какие-нибудь инопланетяне с семнадцатью руками, инфракрасными глазами и ушами, из которых разлетаются топленые сливки, проводили точно такие же опыты, что и мы, но объяснили полученные результаты, не прибегая к такому понятию, как кварк. Тем не менее, согласно моделезависимому реализму, кварки существуют в модели, которая совпадает с нашими наблюдениями за поведением субъядерных частиц.

Кварки. Концепция кварков – крайне важный элемент в наших теориях фундаментальной физики, несмотря на то что наблюдать отдельные кварки невозможно.

Моделезависимый реализм может дать основу для обсуждения вопросов, подобных вот такому: что происходило до создания мира, если он был создан конечное время назад? Христианский философ Августин Блаженный (354–430) считал, что ответ не в том, что Бог уготовил ад для людей, задающих подобные вопросы, а в том, что время – это свойство созданного Богом мира и его не существовало до сотворения мира, которое, по мнению философа, произошло не так уж давно. Это одна из возможных моделей, полюбившаяся тем, кто утверждает, будто расчет времени, данный в Книге Бытия, верен буквально, несмотря на то что в мире встречаются окаменелости и другие свидетельства, доказывающие, что мир намного старше. (Они что, были подброшены, чтобы дурачить нас?) Кто-то может придерживаться другой модели, согласно которой время длится уже 13,7 миллиарда лет, считая от Большого взрыва. Эта модель, объясняющая большинство наших нынешних наблюдений, включая исторические и геологические свидетельства, является лучшим из имеющихся представлений о прошлом. Она может объяснить и окаменелости, и данные радиоуглеродного анализа, и то, что до нас доходит свет от галактик, расположенных в миллионах световых лет от нас. Поэтому вторая модель – теория Большого взрыва – более приемлема для нас, чем первая. И все же ни одну из них нельзя считать более реальной.

Некоторые признают модель мира, в которой время существовало и до Большого взрыва. Пока неясно, насколько она лучше для
Страница 10 из 10

объяснения нынешних наблюдений, поскольку представляется, что при Большом взрыве законы развития Вселенной могли кардинально измениться. Если это произошло, то нет смысла создавать модель, включающую в себя время до Большого взрыва, поскольку все, что существовало ранее, не имеет наблюдаемых последствий в настоящем, и поэтому мы можем твердо придерживаться идеи, рассматривающей Большой взрыв как акт творения мира.

Любая модель хороша, если она:

1) простая (или «изящная»);

2) содержит мало произвольных или уточняющих элементов;

3) согласуется со всеми существующими наблюдениями и объясняет их;

4) дает подробные предсказания результатов будущих наблюдений, которые могут опровергнуть эту модель или доказать ее ложность, если предсказания, сделанные по этой модели, не подтверждаются.

Например, теория Аристотеля о том, что мир состоит из четырех элементов – земли, воздуха, огня и воды – и что объекты действуют так, чтобы выполнить свое предназначение, была изящна и не содержала уточняющих элементов. Но во многих случаях она не могла дать четких предсказаний, а если и давала, то эти предсказания не согласовывались с наблюдениями. Одно из таких предсказаний гласило, что более тяжелые предметы должны падать быстрее, поскольку их предназначение – падать. И похоже, никто до Галилея не счел нужным проверить это. Известна история о том, как он проверял это, бросая предметы различной массы с «падающей» Пизанской башни. Рассказ, скорее всего, недостоверный, а вот точно известно, что Галилей скатывал разные грузы по наклонной плоскости и заметил, что вопреки предсказанию Аристотеля они движутся с одинаковым ускорением.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/pages/biblio_book/?art=22610596&lfrom=279785000) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

notes

Сноски

1

Перевод Г. А. и Т. Б. Бурба.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Здесь представлен ознакомительный фрагмент книги.

Для бесплатного чтения открыта только часть текста (ограничение правообладателя). Если книга вам понравилась, полный текст можно получить на сайте нашего партнера.