Режим чтения
Скачать книгу

Диагностика и лечение позвоночника. Уникальная система доктора А. М. Уриа читать онлайн - Алекс Монастерио Уриа

Диагностика и лечение позвоночника. Уникальная система доктора А. М. Уриа

Алекс Монастерио Уриа

Йога-терапия

Позвоночник – не только основа скелета человека, но и буквально стержень его здоровья. Всем известно, сколько возможных недугов вызывает больной позвоночник и как важно, чтобы он был в порядке!

Эта книга посвящена уникальной системе доктора Алекса Монастерио Уриа – крупнейшего испанского физиотерапевта, остеопата, руководителя направления «Анатомия терапевтической йоги» в клинике «Здоровый позвоночник». Автор книги затрагивает все области медицины (анатомию, физиологию, постурологию), которые занимаются изучением позвоночника. Он анализирует возможные источники проблем с позвоночником, объясняет, из-за чего возникают такие болезни, как артроз, грыжи, гиперлордоз, сколиоз.

В основе метода доктора Уриа – сочетание знаний о постуральной гигиене и движении с йоготерапией и другими эффективными методами лечения. Книга включает в себя специальные упражнения, которые могут вернуть здоровье и поставить людей на ноги.

Алекс Монастерио Уриа

Диагностика и лечение позвоночника. Уникальная система доктора А. М. Уриа

Аlex Monasterio Ur?a

COLUMNA SANA

Text, Illustrator: Alex Monasterio Uria © Copyright 2008 Editorial Paidotribo – World Rights Published by Editorial Paidotribo, Badalona, Spain

Со всей любовью я посвящаю эту книгу моей семье и моим друзьям, каждый из которых заложил свой камень на том пути, который мы разделяем.

Я хотел бы поблагодарить своего отца Хосе Луиса за силы и время, вложенные в этот проект, а также за горячую поддержку, которую он оказывал мне с самого начала. Я хотел бы особенно поблагодарить Марту Кастеллс, модель книги, за ее безусловную самоотдачу и ее оценку, основанную на приобретенном в течение многих лет опыте занятия йогой, а также Антони Кабота за поддержку, на которую я всегда мог рассчитывать, и за его открытое и искреннее отношение к окружающим. Также я хотел бы поблагодарить моего брата Мауро и Хавьера Перес-Портабелла за их участие в качестве мужских моделей, а также Сесилию Фаррас, Стива Адамса, Кристину Мата, Розу Асенсио и Агуста Каталан за их интерес и критический взгляд, без которых было бы невозможно довести эту книгу до совершенства. Хочу поблагодарить всех учеников, с которыми мне посчастливилось разделить часть моего профессионального пути, за большой интерес, проявленный ими к анатомии и физиологии, что послужило для меня огромным стимулом для самосовершенствования как физиотерапевта и преподавателя.

Всем большое спасибо.

Пролог

Несколько месяцев назад я написал, что в эпоху информации и связи является большой проблемой создание научной книги о здоровье.

В настоящий момент в нашем обществе если и есть что-то в изобилии, так это информация. С моей точки зрения, здесь кроется большая проблема, которая становится еще больше, когда речь заходит о том, что это книга о позвоночнике. При возможности получения такого количества информации использование только той ее части, которая является наиболее значимой, и той, которая могла бы улучшить взаимосвязь с читателем, – невероятно сложная задача.

Автору, Алексу Монастерио, по моему скромному мнению, удалось справиться с этой задачей. Далее я постараюсь доказать это.

Книга, предложенная нашему вниманию Алексом Монастерио, отражает его взгляд на проблему. Как специалист в области физиотерапии, он знает, что позвоночник является осевым скелетом нашего организма и нарушение его функции вызывает множество различных заболеваний. Как специалист в области здравоохранения, он знает, что должен пропагандировать здоровый образ жизни, используя все свои педагогические навыки и проявляя уважение к людям.

Читая эту книгу, мы можем почувствовать личность автора, его строгость, требовательность к себе, упорство и профессионализм – качества, которые сделали Алекса тем, кто он есть.

Может быть, на полках книжных магазинов его книга пополнит ряд подобных изданий на заданную тему, однако стоит ее открыть и начать читать, как станет понятно, что речь идет совсем не «о еще одной книге». Преподавательские навыки автора начинают ощущаться уже при взгляде на оглавление книги. Сначала читатель узнает, как построен и как функционирует позвоночник. Далее следует описание того, что может воздействовать на позвоночник, и, наконец, автор дает основные стратегии по профилактике заболеваний.

Следует заметить, что рисунки и фотографии, приведенные в книге, были выполнены самим автором в сотрудничестве со своим отцом.

Преподавательские навыки Алекса Монастерио чувствуются в каждой фразе, в каждом объяснении, и наиболее показательным в этом отношении является глоссарий, отражающий намерение автора передать знания каждому читателю независимо от уровня подготовки.

Из всего сказанного можно сделать вывод, что автор этой книги достигает многих целей. Книга может рассматриваться как популярное издание высокого уровня и как учебник для изучения всего, что связано с позвоночником.

Наконец, понимая, сколько было вложено сил в подготовку этого издания, я хотел бы поздравить автора с окончанием его работы над книгой.

Большое спасибо.

Профессор Антони Кабот Хернандес

Университетская школа медсестер, физиотерапии Бланкерна

Университета Рамона Луллия, Барселона

Введение

Развитие

• Формирование Земли

4 500 миллионов лет назад.

• Первые клеточные

3 800 миллионов лет назад.

• Первые животные с протопозвоночником (Пикая)

500 миллионов лет назад.

• Млекопитающие

245 миллионов лет назад.

• Первые приматы

60 миллионов лет назад. Примат: отряд, к которому принадлежит человек и его наиближайшие «родственники» (в том числе лемуры, шимпанзе, гориллы и орангутаны). Все приматы имеют общие характеристики: 5 пальцев на ногах и руках, фронтально расположенные глаза, одинаковое строение зубов и схожее строение тела.

• Гоминиды (человекообразные)

4 миллиона лет назад.

Гоминид: в традиционной таксономии человекообразные характеризуются наличием двух ног, в основном человек и родственные ему вымершие животные (австралопитеки, homo-erectus и т. д.). Филогенетическая таксономия, имеющая большой вес в настоящее время, также включает в эту группу человекообразных обезьян (шимпанзе, гориллы и орангутаны).

• Homo sapiens

160 000 лет назад.

Homo sapiens: термин, который используется для обозначения человеческого вида и его некоторых предков на этапе эволюции.

Пятьсот миллионов лет назад в теплых водах Земли обитало животное Пикая, имеющее форму плоского червя. Это было первое животное, обладающее прототипом современного позвоночника. От этого животного берут начало все позвоночные.

Человек произошел от той ветви эволюции, которая берет начало от Пикая, и с тех пор строение и функции его организма претерпели множество трансформаций, в чем первейшую роль играла способность адаптироваться к условиям окружающей среды. Одно из самых значительных изменений было связано с позвоночником, и произошло оно, когда человек спустился с деревьев и научился ходить на нижних конечностях.

В Миоценовую эпоху (пять – двадцать миллионов лет назад) на африканском континенте наряду с другими человекообразными обезьянами жил Проконсул, наш общий
Страница 2 из 13

предок. Данный примат обитал на верхушках деревьев, которые давали ему защиту и пропитание. Жизнь на высоте требовала определенных умений: висеть на ветвях и передвигаться по густым лесам. Проконсул благодаря своей ловкости и малому весу с легкостью прыгал с ветки на ветку. Его конечности были достаточно цепкими, чтобы он мог прочно удерживаться на ветке. Его движения были высокоточными, что позволяло ему доставать и съедать пищу, которой в основном служили фрукты. Из-за малого веса тела и отсутствия прямохождения (вес распределялся на все четыре конечности) его колени были менее крепкими, чем наши.

Биомеханические функции и структура позвоночника этих первых приматов были очень схожи с человеческими, несмотря на существование значительных вариаций в зависимости от пространственного положения позвоночника. Одновременно с этим первые приматы характеризовались наличием изгиба в шейном и поясничном отделах. У человека в результате хождения на двух ногах развился третий изгиб. Таким образом, у человека их три: шейный, грудной и поясничный изгибы.

Два с половиной миллиона лет назад усилилось охлаждение климата в мире, что спровоцировало значительные изменения в дождевом режиме в тропических районах. Случались периоды засухи, из-за которых леса превратились в саванны. Эти изменения вынудили наших предков проводить больше времени на земле, что привело к началу периода адаптации к новой среде обитания, развитию новых способностей и освоению новых территорий.

Проконсул

В организме наших предков происходили изменения: он приспосабливался к тому, чтобы извлекать максимум пользы из окружающей среды. В принципе наши предки использовали все четыре конечности для передвижения, однако, мало-помалу, система передвижения менялась. Стали осваиваться более длинные дистанции. Вместе с этим важнейшее значение стали иметь ноги, которые становились более длинными и крепкими.

Тазовые кости сократились в размерах, стали более широкими и сместились назад (ретроверсия), а вес стал распределяться прямо на головки бедра, способствуя более устойчивому хождению на двух ногах.

Положение на двух ногах предоставляло много преимуществ: более быстрое передвижение, освоение значительных дистанций без больших затрат энергии (использовались две конечности вместо четырех), уменьшение поверхности, подвергаемой солнечному воздействию, увеличение фокуса зрения для обнаружения источника питания или опасности, а также свободные руки. Увеличилась возможность манипуляции предметами, и стали создаваться первые приспособления для охоты, для нарезки мяса и т. д., появились прочие навыки, для которых было необходимо использовать ум (для совершенствования используемой техники, изобретения новых способов применения определенных инструментов и т. д.). Таким образом, благодаря наличию таких стимулов, как увеличение потребляемых протеинов (добытого на охоте мяса), и развитию таких навыков, как общение, масса головного мозга значительно увеличилась.

Реестры ископаемых указывают на то, что начало перехода от хождения на четырех ногах к хождению на двух ногах произошло около четырех миллионов лет назад и укрепилось намного позже, после климатических изменений, повлиявших на пейзаж Земли. Прямохождение ознаменовало одну из великих вех в истории эволюции человеческого вида.

Несмотря на множество функциональных преимуществ, которые давало прямохождение, новое положение влекло за собой определенные неудобства, связанные с механическим воздействием на позвоночник и определенные мышцы, поддерживающие его.

При поддержании вертикального положения позвонки и диски вынуждены переносить значительной силы давление, создаваемое головой, руками, грудной клеткой, легкими, сердцем, диафрагмой и органами брюшной полости. Нагрузка вместе с неправильной осанкой могут спровоцировать изменения во всем позвоночнике и стать причиной протрузии, грыжи диска, ущемления, ишиаса, сколиоза и т. д. Кроме того, увеличилась активность постуральных и стабилизационных мышц, отвечающих за поддержание позвоночника. При этом мышцы легко перегружаются и могут повредиться.

Большинство болей в спине обычно провоцируются заболеваниями мышц, дисков и суставов, вызываемыми неправильными движениями и положениями в течение дня.

Применение знаний о постуральной гигиене и движении сводит к минимуму агрессивное воздействие на структуры позвоночника, предохраняя его от повреждений. Кроме того, необходимо следить за позвоночником (делать специальные упражнения), чтобы компенсировать негативное воздействие силы притяжения и сидячего образа жизни, характерного для современного общества и вызывающего проблемы, связанные с усилением искривлений, уменьшением подвижности, появлением гипертонуса, потерей эластичности, снижением трофики мышц и сопротивления к усилию и т. д.

Функции и строение позвоночника

Функции позвоночника

• Позвоночник выполняет четыре основных функции. Первая из них и наиболее очевидная – способность удерживать туловище в вертикальном положении.

• Движение туловища возможно благодаря многочисленным позвонкам, сцепленным друг с другом и образующим позвоночник.

• Позвоночник вместе с ребрами и тазовыми костями создает каркас, служащий для защиты внутренних органов, как, например, легких, сердца или матки.

• Защита спинного мозга. Спинной мозг (структура, обеспечивающая взаимодействие головного мозга с различными частями тела – смотри с. 52) состоит из нервной ткани, которая без должной защиты может быть повреждена. В каждом позвонке имеется так называемое позвоночное отверстие. В совокупности все позвоночные отверстия образуют так называемый спинной канал, через который проходит спинной мозг, защищенный костным «панцирем» по всей длине.

Отделы позвоночника

Если посмотреть на человека сбоку, можно различить три различных отдела спины:

• Верхний отдел имеет изгиб вперед, так называемый «шейный лордоз», и характеризуется наличием 7 позвонков. Это шейный отдел (С1 – С7).

• Средний отдел имеет изгиб назад, то есть «грудной кифоз», и состоит из 12 позвонков (D1 – D12). Это грудной отдел. Некоторые авторы используют литеру «Т» для обозначения грудных позвонков (Т1 – Т12).

• Самый нижний отдел, как и самый верхний, имеет изгиб вперед, так называемый «поясничный лордоз», и состоит из 5 позвонков (L1 – L5). Это поясничный отдел.

Эти три отдела включают в общей сложности 24 позвонка, каждый из которых является подвижным.

• Кроме того, в нижней части позвоночника есть два отдела, сформированные позвонками, более спаянными друг с другом и лишенными подвижности. Это крестцовый отдел, состоящий из пяти позвонков (S1 – S5), и копчиковый отдел, образованный тремя или четырьмя рудиментарными позвонками (Cx1 – Cx4).

Изгибы позвоночника выполняют важную задачу, компенсируя ударную силу при ходьбе, беге, прыжке и помогая поддерживать равновесие тела, когда человек стоит.

Согласно расчетам инженеров-биомехаников, изгибы позвоночника выполняют функцию рессор или пружин, которые делают возможными более высокие нагрузки, чем те, что мог бы вынести
Страница 3 из 13

позвоночник без изгибов.

Позвоночник эмбриона в утробе матери имеет лишь один изгиб – кифоз. После рождения, когда ребенок начинает держать голову прямо, формируется шейный лордоз. В конце концов, когда ребенок уже в состоянии встать на ноги и начинает ходить, появляется поясничный лордоз. Формирование изгибов происходит постепенно до достижения ребенком приблизительно 10-летнего возраста.

ПОЗВОНОЧНИК

Также называемый «хребет», является осевым скелетом человека. Состоит из 33 или 34 позвонков (количество позвонков копчика может варьироваться), входящих в пять отделов (шейный, грудной, поясничный, крестцовый и копчиковый).

ТУЛОВИЩЕ

Это центральная часть тела, состоящая из таза, позвоночника и брюшной и грудной полостей (с соответствующими внутренними органами), не включающая руки, ноги и голову.

Строение позвоночника

Как видно из последующих страниц, все позвонки позвоночника не одинаковы. Поясничные позвонки достаточно большие и крепкие для того, чтобы выдерживать повышенную нагрузку, которой они подвержены. Шейные позвонки меньше, так как их функция заключается лишь в удержании веса головы. Позвонки разных отделов имеют отличия, однако для всех позвонков характерна одинаковая структура. Так, практически все позвонки состоят из одних и тех же элементов, и, когда речь заходит о типичном позвонке, имеется в виду модель позвонка, содержащая элементы, общие практически для всех позвонков.

В передней части всех позвонков, кроме атланта и эпистрофея, имеется тело позвонка (1). Тело позвонка – толстая часть, имеющая нижнюю и верхнюю поверхность, к которым крепится межпозвоночный диск. Сзади к телу позвонка прилегает костное кольцо, называемое дугой (3-4-5) и образующее позвоночное отверстие (2), через которое проходит спинной мозг.

Дуга состоит из ножек (3), суставных отростков (4) и двух пластин (5). Верхняя и нижняя поверхности ножек образуют кривую линию и вместе с двумя прилегающими позвонками формируют межпозвоночное отверстие (смотри с. 41), через которое проходят спинномозговые нервы, берущие начало в спинном мозге и иннервирующие тело человека.

По краям суставных отростков находятся суставные поверхности (6), служащие для соединения позвонков между собой.

Точкой схождения пластин является остистый отросток (7). Его задняя часть соответствует уплотнениям, которые прощупываются в центре спины.

По обеим сторонам суставных отростков находятся поперечные отростки (8). Как и остистые отростки, поперечные отростки предназначены для крепления связок и мышц.

ТИПИЧНЫЙ ПОЗВОНОК

1. Тело позвонка

2. Позвоночное отверстие

3. Ножки

4. Суставные отростки

5. Пластины

6. Суставные поверхности

7. Остистый отросток

8. Поперечный отросток

АТЛАНТ И ЭПИСТРОФЕЙ

Атлант: в греческой мифологии Атлант – это персонаж, который держал небесный свод. Таким же образом первый шейный позвонок держит череп. У атланта нет тела позвонка и остистого отростка.

Эпистрофей: происходит от латинского слова «ось». Эпистрофей имеет зубовидный отросток (9), который сочленяется с атлантом.

ШЕЙНЫЕ ПОЗВОНКИ (С3 – С7)

Поперечные отростки шейных позвонков расположены гораздо выше и имеют отверстие, называемое «поперечное отверстие» (10), через которое проходит позвоночная артерия, частично обеспечивающая мозговой кровоток.

Остистые отростки шейных позвонков (с С2 по С6) слегка наклонены книзу и раздвоены.

ГРУДНЫЕ ПОЗВОНКИ

Все грудные позвонки с двух сторон сочленены с ребрами посредством сустава головки ребра (11) и реберно-поперечного сустава, иначе называемого суставом реберного бугорка (12).

Поперечные отростки грудных позвонков толстые и немного отклонены кзади. Остистые отростки обращены книзу.

ПОЯСНИЧНЫЕ ПОЗВОНКИ

Поясничные позвонки отличаются массивным телом бобовидной формы. Остистые отростки короткие и расположены горизонтально.

Верхние суставные поверхности поясничных позвонков (6а) ориентированы вовнутрь, а нижние кнаружи (6b), что является причиной недостаточной подвижности в этом отделе при наклонах и повороте.

Движения позвоночника

Оценивая движения, которые способны производить два соседних позвонка, можно прийти к заключению, что они незначительны. Однако если смотреть на работу сочлененных между собой 24 подвижных позвонков, можно увидеть общую картину движения, складывающуюся из многочисленных движений связанных друг с другом позвонков. Эти 24 позвонка с соответствующими межпозвоночными дисками делают возможным движение позвоночника в целом либо в одном из его отделов, как, например, при сгибании только лишь в шейном отделе при кивке головой.

Изучая динамические возможности позвоночника, необходимо учитывать, что при комбинации движений позвоночника и таза конечным результатом будет большой уровень смещения туловища на сумму движений обеих структур (смотри с. 71).

Исследования, проведенные физиологами Панжаби, Уайтом или Капанджи, дают разные результаты относительно количества движений, которые может производить позвоночник. Возможно, такое различие в полученных данных основано на характеристиках изучаемых субъектов, поскольку гибкость позвоночника зависит от таких факторов, как конституция, возраст и эластичность мышц и связок.

Далее приводится приблизительное количество средних амплитуд, которые обычно встречаются у здоровых людей.

Движения всего позвоночника

АНАТОМИЧЕСКОЕ ПОЛОЖЕНИЕ

Стандартное, исходное положение, отталкиваясь от которого изучаются движения, которые способен производить человек, а также различные отделы тела.

Движение в шейном отделе

В анатомическом положении шея слегка вытянута и имеет изгиб – шейный лордоз.

Необходимо учитывать, что уровень шейного лордоза в норме варьируется от 2 до 25°, хотя на этот счет у ученых имеют различные мнения. Измерение изгиба производится по системе Кобба, в которой за исходное принимается положение первого шейного позвонка и нижней поверхности тела позвонка С7.

При измерении градуса движения в области атланта за основу берут жевательную плоскость (можно представить как надкусывание картонной пластинки) относительно горизонтальной поверхности. При этом учитывается положение головы при полном завершении сгибания. Такое движение головы становится возможным благодаря подвижному атланто-затылочному соединению.

Приблизительно 15° сгибания шеи из 50° осуществляются благодаря подвижному атлантозатылочному соединению; это же относится и к разгибанию.

При сгибании позвоночник сначала находится в анатомическом положении, потом начальный лордоз выпрямляется, а затем позвоночник возвращается в исходное положение. При разгибании просто увеличивается лордоз.

При совершении ретропульсивного движения также происходит выпрямление шейного изгиба, но возвращения в исходное положение не происходит. Ретропульсивное движение головы, или выпрямление шейного лордоза, может рассматриваться как частичное сгибание.

При антепульсивном движении нижние шейные позвонки сгибаются для смещения головы вперед, однако верхние позвонки разгибаются (особенно это
Страница 4 из 13

касается атланто-затылочного соединения) для поддержания поля зрения в горизонтальной проекции. За счет атланто-затылочного соединения происходит наклон в сторону на 8°. Остальные шейные позвонки обеспечивают наклон на 37°.

Из 90° движения шеи атлантозатылочное соединение обеспечивает 12°, и еще 12° – соединения атланта с эпистрофеем. Оставшиеся 66° производятся с помощью подвижных соединений с С3 по С7.

Движения в грудном отделе

Принимая в качестве основы верхнюю поверхность тела позвонка D1 и нижнюю поверхность позвонка D12, можно прочертить две линии для измерения угла данного отдела позвоночника. При свободном положении стоя грудные позвонки размещены под углом, варьирующимся от 20 до 50°.

Движения в грудном отделе, по сравнению с шейным отделом, ограничены, что вызвано, с одной стороны, сближением ребер (при сгибании и наклоне) и, с другой стороны, сжатием дугоотростчатых суставов (разгибание – смотри с. 45), а также давлением межреберных мышц и связок.

Движения в поясничном отделе

По Коббу, угол движения в поясничном отделе варьируется между 20 и 70°. Выделяется недостаточная подвижность поясничных позвонков при наклоне и повороте, вызванная контактом дугоотростчатых суставов, обусловленным их положением (смотри с. 42).

Хотя в этом разделе показаны движения каждого отдельного отдела позвоночника, грудные и поясничные позвонки (грудопоясничный отдел) в норме действуют совместно при выполнении повседневных движений, о чем говорится в разделах «Биодинамика на постуральное перевоспитание» и «Упражнения мышц».

Связки позвоночника

Суставные связки представляют собой тяжи соединительной ткани, идущие от одной кости к другой и служащие для обеспечения стабильности сустава. Если бы не было связок, было бы невозможно поддерживать вертикальное положение тела и позвоночник бы рухнул как карточный домик. С другой стороны, связки ограничивают амплитуду движений, иными словами, сгибание за пределами нормы становится невозможным из-за напряжения связок (1) и мышечно-сухожильного напряжения (2).

Позвоночник в целом имеет шесть видов связок, поддерживающих многочисленные суставы позвоночника.

Передняя продольная связка находится спереди тел позвонков. Она служит для стабилизации и ограничения движения при разгибании.

Ограничителями сгибания (смотри с. 45 и 39) служат задняя продольная связка, расположенная за телами позвонков, желтые связки, идущие от дуги позвонка к смежной дуге, межостистые связки, идущие от одного остистого отростка к другому, и надостистая связка, идущая непрерывным тяжем по верхушкам остистых отростков.

Наконец, есть межпоперечные связки, соединяющие поперечные отростки между собой и регулирующие боковые движения.

Следует отметить, что для ограничения сгибания существует четыре вида связок (задняя, желтые, межостистые и надостистые), в то время как для ограничения разгибания существует лишь один вид связок (передняя). Это объясняется тем, что при разгибании в ограничении движения, помимо передней позвоночной связки, участвуют дугоотростчатые суставы позвоночника (смотри с. 45). При сгибании суставного упора нет, поэтому для удержания и стабилизации позвоночного столба требуется прочное соединение связок.

СВЯЗКИ

Тяжи соединительной ткани, функция которых заключается в стабилизации суставов (связки идут от одной кости к другой). Кроме того, они служат для ограничения движений, поддержания и стабилизации внутренних органов (например, артериальная связка соединяет грудную часть аорты с легочной артерией).

СУХОЖИЛИЯ

Соединительнотканная часть мышц, служащая для прикрепления последних к костям. Как правило, сухожилия находятся с обоих концов брюшка мышцы и могут иметь разную форму в зависимости от места нахождения и морфологии мышц.

СОЕДИНИТЕЛЬНАЯ ТКАНЬ

Соединительная ткань распределена по всему организму и представляет собой структурную основу, соединяющую различные органы и части тела между собой посредством фиброзных мембран, называемых фасции или апоневроз. Связки, капсулы и сухожилия также состоят из соединительной ткани и вместе с апоневрозом оказывают сопротивление растяжению и накапливают энергию (для натяжения), которая используется в повседневной деятельности (смотри с. 95). Существуют также другие виды соединительной ткани, такие как хрящевая соединительная ткань (межпозвоночные диски, суставный хрящ).

Строение и физиология суставов

Сустав представляет собой механизм, использующий две или более кости для их соединения друг с другом. Контактные области называются суставными поверхностями (1), они покрыты суставным хрящом. Суставная жидкость уменьшает трение суставных поверхностей друг о друга при движении и таким образом снижает риск повреждения кости.

Большинство сочленений, например, дугоотростчатые, плечевой, локтевой суставы и т. д., окружены суставной капсулой (2), состоящей из соединительной ткани.

Суставные капсулы выполняют двойную функцию. Они содержат суставную жидкость, а также совместно со связками и мышцами обеспечивают стабильность сустава (предупреждают вывих).

Позвонки соединяются друг с другом с помощью двух дугоотростчатых суставов (3) сзади и межпозвоночного диска (5) спереди. Межпозвоночный диск, образованный соединительной тканью, расположен между телами двух смежных позвонков (4).

Благодаря эластичности дисков позвонки могут сгибаться и вращаться, позволяя, таким образом, позвоночнику производить различные движения.

Сочленение тел позвонков отличается по своей анатомии и функциям. При отсутствии суставной капсулы межпозвоночный диск принимает на себя ее функции.

Направление суставных поверхностей

В зависимости от отдела позвоночника поверхности дугоотростчатых суставов позвонков имеют различное направление. Поверхности шейных позвонков расположены горизонтально и постепенно отклоняются кзади в средних и нижних шейных позвонках, а в грудных позвонках занимают практически вертикальное положение. Суставные поверхности поясничных позвонков расположены вертикально, так, что верхние поверхности направлены к остистым отросткам (1), а нижние направлены кнаружи (2).

Позвоночная тренога

Вес головы, рук, грудной клетки и внутренних органов передается от одного позвонка к другому по трем столбам, образованным телами позвонков и суставными отростками.

Нахемсон (1960) провел исследование с целью определить распределение нагрузки по всей позвоночной треноге и предположил, что 18 % веса несут дугоотростчатые суставы, а оставшиеся 82 % несут диски и мышцы.

Нагрузка на дугоотростчатые суставы значительно увеличивается при разгибании, наклоне или повороте (поясничный отдел), а также при возрастной дегенерации дисков (смотри с. 226).

Увеличение шейного и поясничного изгибов (гиперлордоз) снижает нагрузку на межпозвоночные диски в этих отделах, однако увеличивает нагрузку на дугоотростчатые суставы (смотри с. 45, 200 и 208), подвергая их большому уровню компрессии и, таким образом, повреждая их. Выпрямление этих изгибов (визуально оценивается поясничный и/или
Страница 5 из 13

шейный отдел) и усиление грудного кифоза (смотри с. 204) увеличивают нагрузку на межпозвоночные диски, вызывая их дегидратацию и дегенерацию.

Межпозвоночный диск

В межпозвоночном диске выделяют центральную часть, или студенистое ядро (1), приблизительно на 80 % состоящее из воды, и периферическую часть, или фиброзное кольцо (2), образованное концентрическими слоями волокнистой соединительной ткани наподобие луковицы.

ТОЛЩИНА ДИСКОВ

Функции дисков

• Распределение нагрузки (вместе с дугоотростчатыми суставами) по всей длине позвоночника.

• Позвонки могут смещаться по отношению друг к другу, позволяя совершить движение.

• Кроме того, диски служат в качестве амортизаторов для защиты позвоночника от воздействия, вызываемого при определенном движении, как, например, во время бега или прыжка. Нагрузка на позвоночник снижается благодаря эластичности дисков (амортизирующий эффект) и напряжению связок и мышц.

Функциональная единица, образованная двумя позвонками и межпозвоночным диском, действует при сгибании/разгибании или при продольном сжатии наподобие механизма пинцета или зажима.

Сгибание

• При сгибании позвонки сближаются спереди, провоцируя напряжение растяжения задних волокон дисков (1) и компрессионное напряжение передних волокон (2). Пространство между телами позвонков (высота диска) в передней части меньше, чем в задней части. Это служит причиной разницы давления (больше в передней части), под действием которого ядро смещается кзади, увеличивается напряжение задних волокон диска (давлением на ядро), и все это суммируется к изначальному напряжению растяжения.

• Задние суставные поверхности немного отделяются и, таким образом, не нагружаются. Давление передается на межпозвоночный диск.

• Периметр соединительных отверстий увеличивается.

• Задние связки натягиваются и ограничивают движение.

Разгибание

• При разгибании все происходит с точностью наоборот: позвонки сближаются сзади, а ядро смещается вперед вследствие сокращения высоты диска в задней части (3).

• Часть нагрузки передается на дугоотростчатые суставные поверхности, которые плотно соединены (наподобие торцевых ограничителей движения), таким образом, чем больше разгибание, тем больше давление на поверхности.

• Периметр соединительных отверстий сокращается.

• Передняя позвоночная связка натягивается и вместе с дугоотростчатыми суставами ограничивает движение.

Наклон

• Ядро смещается в сторону, противоположную движению. Например, при наклоне вправо ядро сместится влево.

• В дугоотростчатых суставах на стороне, куда направлено движение, увеличивается давление, а на противоположной стороне давление снижается.

• Диаметр соединительных отверстий, расположенных на стороне по направлению движения, сокращается, а диаметр соединительных отверстий на противоположной стороне увеличивается.

• Межпоперечные связки на стороне, противоположной направлению движения, натягиваются.

Поворот

Если рассмотреть фиброзное кольцо через микроскоп, можно увидеть, что оно состоит из слоев и пластин, образованных перекрещивающимися волокнами. Один слой волокон направлен в одну сторону, другой слой направлен в противоположную сторону, как это показано на рисунке. При повороте позвоночника волокна смещаются горизонтально, производя натяжение и принуждая позвонки приблизиться друг к другу. Иными словами, во время движения диски сжимаются таким образом, что высота позвоночника уменьшается.

Давление на диск при различных положениях тела

Группа исследователей во главе со скандинавским ученым Нахемсоном провела многочисленные испытания функционирования межпозвоночных дисков при различных положениях тел а. В течение 20 лет 100 добровольцам измеряли нагрузку на межпозвоночные диски с помощью зонда, чувствительного к давлению («Disc Pressure Measurements», Spine, 1981).

С другой стороны Вилке и его команда получили схожие результаты, хотя исследование проводилось на одном человеке (также с помощью зонда, вводимого в диск на уровне позвонков L4 и L5). Вдобавок ученые рассмотрели новые положения тела, чтобы определить, способствуют ли они повреждению дисков, и оценить болезненные процессы. Межпозпозвоночные диски испытуемого, мужчины 45 лет, весом 70 кг, были в пределах нормы.

ПОЛОЖЕНИЕ ЛЕЖА НА СПИНЕ

(ноги вытянуты)

В положении лежа на спине происходит значительное снижение давления на межпозвоночные диски, так как отсутствует вертикальная нагрузка на позвоночник. Силы мышечного напряжения и внутридисковая жидкость дают давление 1,02 кг/см

.

ПОЛОЖЕНИЕ ЛЕЖА НА СПИНЕ

(ноги согнуты)

Если в положении лежа ноги согнуты в бедрах, давление снижается до 0,816 кг/см

вследствие отсутствия давления натяжения пояснично-подвздошных мышц над поясничными позвонками (смотри с. 274 и 275).

ПОЛОЖЕНИЕ ЛЕЖА НА БОКУ

В этом положении также отсутствует давление сгибающих мышц бедра на диски, несмотря на то что нагрузка немного выше, чем в положении лежа на спине (1,22 кг/см

). Возможно, это объясняется легким изгибом позвоночника, растянутого как мост от надплечья к тазу. Как указывает автор данного исследования, это ставит под вопрос то, является ли на самом деле положение лежа на спине наилучшим положением для сна (смотри с. 274).

ПОЛОЖЕНИЕ СИДЯ

(с опорой)

Во время расслабленного сидения с опорой на спину и таз давление на диски увеличивается втрое по сравнению с положением лежа на спине (3,37 кг/см

).

Если откинуться на спинку стула, давление на диски сокращается приблизительно на 20 % вследствие мышечного расслабления и переноса части веса тела на спинку стула (2,75 кг/см

).

ПОЛОЖЕНИЕ СИДЯ

(без опоры)

В положении сидя без опоры на спину тонус мышц увеличивается. Мышечное напряжение и давление на позвоночник веса верхней части тела провоцируют увеличение нагрузки на межпозвоночные диски (4,49 кг/см

).

ПОЛОЖЕНИЕ СИДЯ

(спина согнута)

Если согнуть позвоночник в положении сидя, как когда мы застегиваем обувь, значительно увеличивается давление на нижние диски (8,46 кг/см

). Для того чтобы сохранить диски, рекомендуется избегать этого положения (смотри с. 285).

ПОЛОЖЕНИЕ СТОЯ

Давление, оказываемое на диски в положении стоя (5,1 кг/см

), выше, чем в положении сидя без опоры, возможно, из-за веса рук (при сидении руки лежат на коленях) и увеличения тонуса, необходимого для поддержания равновесия.

СГИБАНИЕ ПОЗВОНОЧНИКА

Следует отметить значительное увеличение давления на диски при сгибании позвоночника из положения стоя (16,3 кг/см

). Согласно испытаниям, проведенным Нахемсоном, сгибание всего лишь на 20° увеличивает компрессию дисков в 2,5 раза. Частое повторение такого движения может с легкостью привести к износу дисков.

ПОДНЯТИЕ ТЯЖЕСТИ ИЗ ПОЛОЖЕНИЯ СТОЯ

Исследования Вилке показали опасное увеличение давления на диски при поднятии веса в 20 кг из положения стоя с согнутым позвоночником (26,5 кг/см

). Это разрушает диски и способствует возникновению люмбалгии (смотри с. 189 и 280). Если поднятие веса выполняется
Страница 6 из 13

из положения сидя на корточках и при этом спина прямая, давление снижается на 35 % (17,3 кг/ см

).

ДИФФУЗИЯ

Большинство тканей организма получают питательные вещества и кислород, необходимые для осуществления метаболической деятельности, из кровеносных сосудов. В случае с межпозвоночными дисками питание происходит только за счет диффузии. В течение дня диски подвергаются нагрузке и теряют в высоте. Это происходит потому, что жидкость ядра через поры переходит в прилегающие тела позвонков. Оказавшись там, жидкость обогащается питательными веществами и кислородом благодаря развитой сети сосудов тел позвонков.

Во время сна нагрузка на диски значительно снижается, и регенерированная жидкость вновь возвращается в них. В течение дня диски теряют от 10 до 25 % жидкости и к вечеру уменьшаются на 1–2 см. То есть высота диска утром больше, чем вечером. Уменьшение размера происходит уже после первых четырех часов, которые человек проводит «на ногах».

Физическая активность способствует питанию дисков, в особенности физические упражнения, снижающие компрессию дисков и чистую потерю жидкости в течение дня.

С возрастом происходит дегенерация межпозвоночного диска (потеря влаги и эластичности), высота диска уменьшается. Сам диск становится более хрупким и чувствительным к повреждениям (смотри с. 226). Потеря в высоте диска, усиление изгибов позвоночника в пожилом возрасте и остеопоротические изменения приводят к уменьшению роста человека.

Спинной мозг

Спинной мозг (1) расположен в позвоночном канале. Вверху, на уровне затылочного отверстия, он переходит в ствол головного мозга, а внизу, на уровне поясничных позвонков, заканчивается «конским хвостом». Спинной мозг представляет собой тяж 45 см длиной и 1 см в диаметре. Он покрыт защитными мозговыми оболочками, между которыми находится спинномозговая жидкость.

От спинного мозга отходят миллионы нервов (наподобие микроскопических электрических проводов), предназначенных для переноса информации по всему телу.

Головной мозг и спинной мозг – два органа, образующих центральную нервную систему (ЦНС).

От спинного мозга отходят спинномозговые нервы (2), относящиеся к периферической нервной системе (ПНС). Они выходят из позвоночного канала через два межпозвоночных отверстия, разделяются и распределяются по организму, образуя сложную сеть нервов, постепенно становящихся все более тонкими.

Функции спинного мозга и ствола головного мозга

• Передают от мозга к мышцам нервные импульсы, необходимые для осуществления движения.

• Передают чувствительную информацию (тактильную, тепловую, болевую, о пространственном расположении тела и т. д.) от периферии к большому мозгу.

• Регулируют трофику тканей организма вместе с вегетативной нервной системой (ВНС), оказывающей воздействие на кровеносные сосуды.

• Участвуют в регуляции работы сердечной мышцы, гладкой мускулатуры (регуляция артериального давления, опорожнения мочевого пузыря, перистальтики пищеварительного тракта и т. д.) и различных желез организма.

• Регулируют нервно-мышечные рефлексы.

РЕФЛЕКС

Автоматические реакции (без участия воли), быстрые и предсказуемые для определенного стимула, контролируемые спинным мозгом и стволом, происходящие в ответ на различные стимулы. Рефлексы служат для регуляции работы скелетной и гладкой мускулатуры, сердечной мышцы и желез организма.

РЕФЛЕКТОРНАЯ ДУГА

Рефлекторная дуга может рассматриваться как замкнутый круг, в котором чувствительные импульсы, появляющиеся в ответ на стимул (боль, внезапное растяжение и т. д.), идут к спинному мозгу и стволу и вызывают автоматическую двигательную реакцию.

Нервно-мышечные рефлексы

РЕФЛЕКС ОТДЕРГИВАНИЯ

Информация, полученная чувствительными рецепторами при болевом стимуле, например, при ожоге утюгом, передается в спинной мозг (1). Сразу после приема сигнала об агрессии спинной мозг посылает в ответ необходимую информацию через двигательные нервы (2), инициируя согласованную мышечную реакцию, отводя, таким образом, опасность от пораженной области (рефлекторная дуга).

При получении сигнала об агрессии спинной мозг может инициировать реакцию отдергивания быстрее, чем головной мозг, благодаря чему расстояние, которое преодолевает нервный импульс, меньше. Тем не менее через несколько тысячных секунды информация попадает в чувствительные зоны коры.

РЕФЛЕКС РАСТЯЖЕНИЯ, ИЛИ МИОСТАТИЧЕСКИЙ РЕФЛЕКС

При резком растяжении мышцы из спинного мозга поступает сигнал, заставляющий ее сократиться. Это позволяет уберечь данную область от движения, которое может быть рассмотрено как потенциально опасное, например, при резком повороте лодыжки. Быстрое изменение длины мышц стимулирует волокна (нервные рецепторы, расположенные между сократительными волокнами), отвечающие за подачу в спинной мозг информации о скорости растяжения мышц.

При исследовании рефлекса используют молоточек, которым ударяют по надколенным сухожилиям, провоцируя, таким образом, растяжение сухожилия и мышечных волокон, связанных с обследуемой зоной. Нервно-мышечные волокна посылают информацию в спинной мозг, СМ (3), который посредством рефлекса активирует сокращение четырехглавой мышцы (4). Несмотря на то что изменение длины мышц и сухожилий, происходящее при перкуссии, незначительно, возникает рефлекторная дуга в ответ на высокую скорость изменения.

РЕЦИПРОКНАЯ ИНГИБИЦИЯ АНТАГОНИСТА

Посылая команду сокращения (5) группе мышц, например сгибателям, спинной мозг тормозит активность мышц-антагонистов, разгибателей, чтобы избежать противодействия сил и дать возможность свободно осуществить движение. Это явление может быть использовано в практике растяжения мышц (смотри с. 303).

СУХОЖИЛЬНЫЙ РЕФЛЕКС

Когда мышца подвергается чрезмерному сокращению, рецепторы, расположенные в сухожилии (органы Гольджи), посылают в спинной мозг (7) информацию о необходимости предотвращения данного действия. Спинной мозг тут же отдает команду о максимальном расслаблении мышцы (8) с целью избежать разрыва волокон (смотри с. 304).

Функции и строение таза

Функции таза

Таз представляет собой костное кольцо, образованное двумя тазовыми костями, крестцом и копчиком. Спереди тазовые кости сочленены между собой лобковым сращением, а сзади присоединены к крестцу посредством крестцово-подвздошных суставов. Таз выполняет следующие функции:

• Поддерживает основание позвоночника. Костное кольцо, образованное тазовыми костями и крестцом, позволяет позвоночнику удерживать равновесие и выдерживать вес верхней части туловища.

• Таз имеет форму корзины или бассейна и служит для защиты внутренних органов. Спереди он ограничен брюшными мышцами, снизу – мышцами промежности.

• Таз действует как передатчик сил давления. Он обеспечивает распределение и равномерную передачу веса (в норме) всех верхних структур тела на нижние конечности.

• Два тазобедренных сустава и соединения между крестцом и поясничными позвонками позволяют осуществлять движения, описанные на странице 65.

Строение
Страница 7 из 13

таза

Тазовая кость

По обеим сторонам крестца находятся тазовые кости. В действительности, как нам указывают физиологи, каждая тазовая кость образована тремя костями – подвздошной (А), седалищной (В) и лобковой (С), – которые у детей соединены хрящом, а у взрослых образуют сращение.

В тазовой кости выделяют две поверхности: внешнюю и внутреннюю. Снаружи на тазовой кости имеется характерный рельеф, называемый вертлужной впадиной (8). Это сферическое углубление, покрытое хрящевой тканью и служащее для соединения с головкой бедра.

Изнутри имеются две суставные поверхности, одна, также покрытая хрящевой тканью (11), служит для сочленения с крестцом, а другая является частью лобкового сращения (12), с помощью которого спереди соединяются две тазовые кости.

1. Подвздошный гребень

2. Передняя верхняя подвздошная ость

3. Передняя нижняя подвздошная ость

4. Задняя верхняя подвздошная ость

5. Задняя нижняя подвздошная ость

6. Седалищная вырезка большая

7. Седалищная вырезка малая

8. Вертлужная впадина

9. Запирательное отверстие

10. Седалищный бугорок

11. Суставная поверхность крестца

12. Суставная поверхность лобкового сращения

1. Последний поясничный позвонок (L5)

2. Межпозвоночный диск L5/S1

3. Первый крестцовый позвонок (S1)

4. Крестцово-подвздошные суставы

5. Подвздошный гребень

6. Передняя верхняя подвздошная ость

7. Передняя нижняя подвздошная ость

8. Лобковое сращение (лобковый симфиз)

9. Запирательное отверстие

10. Седалищный бугорок

11. Тазобедренный сустав

12. Головка бедра

13. Малый вертел

14. Большой вертел

15. Задняя верхняя подвздошная ость

16. Задняя нижняя подвздошная ость

17. Большая седалищная вырезка

18. Малая седалищная вырезка

Крестец и копчик

Крестец имеет форму треугольника, обращенного вершиной вниз, а основанием (1) вверх. Основание представляет собой верхнюю поверхность тела позвонка S1. К нему прилегает последний позвоночный диск, а к его верхушке – пятый и последний поясничный позвонок (L5), образуя пояснично-крестцовый сустав (L5/S1).

Крестец состоит из пяти позвонков, сросшихся между собой, но сохранивших структурные элементы описанного типа позвонка. Кроме тела позвонка можно выделить менее развитый поперечный отросток (2), дугу (3), спинномозговой канал (4), дугоотростчатые суставы (5) (встречаются только в позвонке S1) и остистый отросток (6). Соединение остистых отростков крестцовых позвонков называется крестцовым гребнем (7). Также можно отметить наличие межпозвоночных отверстий, называемых крестцовыми отверстиями (8). Через них проходят нервные пучки, иннервирующие ткани промежности и нижних конечностей.

Сбоку легко заметна широкая суставная поверхность (9), служащая для соединения крестца с тазовыми костями.

Копчик представляет собой отросток, состоящий из трех или четырех срощенных позвонков (у разных людей по-разному). Наличие копчика дает основание предполагать, что у наших далеких предков (до Проконсула) имелся хвост.

1. Основание крестца

2. Поперечный отросток

3. Дуга

4. Спинномозговой канал

5. Дугоотростчатые суставы

6. Остистый отросток

7. Крестцовый гребень

8. Крестцовые отверстия

9. Суставная поверхность для соединения с тазовой костью

Движение таза

Благодаря подвижным сочленениям, в том числе тазобедренным суставам и поясничнокрестцовым суставам (L5/S1), в области таза становится возможным совершение различных движений. Выделяют антеверсию и ретроверсию, из которых антеверсия – это смещение подвздошных гребней кпереди, а ретроверсия – это смещение подвздошных гребней кзади.

Для того чтобы понять, как происходит антеверсия и ретроверсия таза, можно рассмотреть следующий пример. Представим, что таз – это «опрокидывающийся кузов», который, опираясь на бедренные головки, способен перемещаться вперед или назад.

Тазобедренный сустав, как и остальные суставы тела, позволяет одной из двух костей, образующих его, перемещаться. При этом вторая кость остается неподвижной. Таким образом, таз может двигаться относительно бедренной кости (антеверсия, ретроверсия, наклон в сторону и поворот таза), или бедренная кость может двигаться относительно таза (сгибание и разгибание, поворот, отведение и приведение к средней линии тела), позволяя тазу оставаться неподвижным, как, например, когда мы сгибаем ногу в бедре при поднятии на ступеньку.

Таз и бедро также могут одновременно совершать движение в тазобедренном суставе. Это происходит, например, когда мы сидим на пятках (движение бедра относительно таза) и при этом смещаем туловище вперед с намерением опереться на мышцы грудной клетки (антеверсия таза).

Сочетание разгибания бедра с ретроверсией таза довольно затруднено из-за натяжения мышц-сгибателей (в частности, подвздошно-поясничной и передней прямой четырехглавой мышцы). Они блокируют перемещение таза кзади, увеличивая прогиб поясницы.

Отношение таза к позвоночнику

Движения таза могут оказывать различное воздействие в зависимости от положения тела во время их выполнения. Тело может находиться прямо (без перемещения) или сочетать следующие траектория движения таза.

Движения таза без перемещения туловища

РЕТРОВЕРСИЯ ТАЗА

При ретроверсии таза поясничный лордоз уменьшается (сгибание в поясничном отделе). Это называется выпрямление поясничного лордоза. Ретроверсия может происходить с сокращением больших ягодичных мышц (1), с сокращением брюшных мышц (2) или обеих групп мышц одновременно. Ограничение движения определяется натяжением задних связок поясничного отдела позвоночника (3) и мышц-сгибателей бедра (4).

АНТЕВЕРСИЯ ТАЗА

При антеверсии таза поясничный лордоз увеличивается (разгибание в поясничном отделе).

Это движение происходит в основном благодаря сокращению паравертебральных поясничных мышц (5) и ограничено контактом суставов поясничных позвонков (6), а также передних поясничных связок (7).

БОКОВОЙ НАКЛОН ТАЗА

Наклон таза включает боковое сгибание грудопоясничных позвонков и может осуществляться различными способами:

• Через растяжение мышц (квадратной поясничной, косой и паравертебральной – 1, длинной мышцы спины и реберно-подвздошной – 2) при одностороннем сокращении (рисунок 1).

• Опускание таза к одной из сторон, как это спонтанно происходит при ходьбе. Таз наклоняется в сторону той ноги, которая находится в фазе размаха (не затрагивает землю). Для того чтобы это понять, достаточно посмотреть на эти движения при дефиле манекенщицы (рисунок 2).

ПОВОРОТ ТАЗА

Поворот таза сопровождается поворотом позвонков грудопоясничного отдела.

Это движение также используется при ходьбе. Так, поворот таза происходит при перемещении ноги вперед. Плечевой пояс делает поворот в противоположную сторону, что необходимо для поддержания равновесия тела.

Движение таза с перемещением туловища

При этом типе движений таз и позвоночник перемещаются совместно в одном блоке.

АНТЕВЕРСИЯ ТАЗА

При движении туловища вперед за счет антеверсии таза позвонки находятся в анатомическом положении, так что перемещение происходит исключительно благодаря
Страница 8 из 13

толкательному движению таза над бедренными суставами. Когда диапазон движения исчерпывается, движение дальше становится невозможно из-за натяжения мышц подколенного сухожилия (1).

Антеверсия с перемещением туловища вперед и сгибанием позвоночника

Диапазон движения вперед может быть увеличен за счет сгибания позвоночника. При наклоне туловища для его удержания и регуляции движения увеличивается тонус паравертебральных мышц (2). При достижении максимального сгибания позвоночника мышцы ослабляют свое сократительное действие, однако остаются напряженными, а задние связки (2) остаются в положении растяжения. Натяжение подколенных сухожилий, паравертебральных мышц и задних связок служит для ограничения объема движений.

Способность развивать больший или меньший диапазон движения в основном зависит от эластичности подколенных сухожилий.

РЕТРОВЕРСИЯ ТАЗА

Для перемещения туловища кзади за счет ретроверсии таза достаточно сократить большие ягодичные мышцы. Натяжение мышц-сгибателей бедра (1), в основном подвздошно-поясничной, прямой передней мышцы четырехглавой мышцы и Бертеновой связки (смотри глоссарий), служит для ограничения движения.

Ретроверсия таза в сочетании с разгибанием позвоночника

Ретроверсия таза может быть дополнена разгибанием позвоночника, что позволяет увеличить перемещение туловища кзади. При совершении данной комбинации движений появляется чувство дискомфорта в поясничном отделе, вызванное увеличением нагрузки на дугоотростчатые суставы (2). Эти суставы вместе с передней позвоночной связкой (3) и брюшными мышцами (4) служат для ограничения движения.

НАКЛОН ТАЗА

Как и при антеверсии и ретроверсии, наклон таза производится с вовлечением в движение туловища.

Речь идет о положении равновесия, когда весь вес тела через сустав, производящий движение, переходит на бедренную кость опорной ноги. Мышцы, описанные на странице 88 и 89, отвечают за стабилизацию положения.

Наклон таза в сочетании с наклоном позвоночника

Когда происходит наклон позвоночника вбок, таз спонтанно перемещается в противоположную сторону для поддержания равновесия тела и также наклоняется в сторону движения туловища.

Элементами, ответственными за ограничение движения, являются:

• Дугоотростчатые суставы (2) той стороны, в которую производится наклон. Они действуют в качестве точки опоры.

• Позвоночные связки (3) стороны, противоположной направлению движения. В основном это межпоперечные и желтые связки.

• Группа отводящих мышц бедра (4) стороны, противоположной движению.

• Квадратная поясничная мышца (5), косые брюшные мышцы (5), паравертебральные мышцы, подвздошно-реберная мышца и длинная мышца спины (3) стороны, противоположной движению, несмотря на то, что они действуют больше как стабилизаторы, чем как ограничители движения.

ПОВОРОТ ТАЗА

В осуществлении поворота таза участвует все туловище. Движение осуществляется из положения стоя с опорой на обе ноги, вращаются обе тазовые кости одновременно в одном направлении. В данном случае движение производится за счет тазобедренных суставов и лодыжек.

Мышцы и биодинамика

Функции мышц

Именно мышцы позволяют нашему телу совершать движение. Это происходит за счет их способности сокращаться и расслабляться. Существуют несколько видов мышц (скелетные, сердечные и гладкие, как описано на с. 80), и их основными функциями являются:

• Производство движения.

• Поддержание скелета и удержание равновесия вопреки силам притяжения.

Мышцы туловища выполняют важную постуральную функцию поддержания позвоночника, стабилизируя его в зависимости от положения тела. Мышцы устойчивы к усталости и могут сохранять активность в течение долгого времени.

• Амортизация ударных сил.

Благодаря эластичности сухожилий и апоневрозов, которыми покрыты мышцы, организм способен амортизировать ударные воздействия.

• Сохранение энергии на протяжении всего периода активности. Энергия, накапливающаяся при напряжении мышечно-сухожильного соединения (например, перед тем как прыгнуть или сделать шаг), высвобождается при толчке и присоединяется к энергии, высвобожденной при сокращении мышц.

Эластичность и устойчивость к растяжению, свойственные сухожилиям, апоневрозу, суставным капсулам и связкам, определяются наличием коллагена и эластина (основных волокон соединительной ткани).

• Защита внутренних структур. Брюшная мускулатура защищает внутренние органы подобно тому, как мускулатура рук и ног защищает сосудистую и нервную ткань конечностей.

• Регуляция температуры тела совместно с кожей. При сокращении мышечных клеток возникает внутренняя реакция, трансформирующая химическую энергию в механическую благодаря механизму клеточного сгорания (питательные вещества расщепляются под воздействием кислорода). В результате появляется тепло и увеличивается температура тела.

Озноб является автоматической реакцией организма, когда при значительном понижении температуры активируются мышцы и происходит выделение тепла во избежание функциональных изменений внутренней среды.

• Участие в крово- и лимфообращении. Сердце, сокращаясь, прогоняет кровь по кровеносным сосудам. Сосуды, в свою очередь, могут замедлить или ускорить циркуляцию крови в зависимости от уровня оказываемого на них давления, как показано на странице 81.

• Участие в функциональных процессах внутренних органов. Благодаря расслаблению мышечных волокон сфинктеров внутренние органы, например, желудок, кишечник и мочевой пузырь, опорожняют свое содержимое. В свою очередь респираторные мышцы регулируют наполнение кислородом легких. При сокращении диафрагмы увеличивается объем грудной клетки, и легкие наполняются воздухом. Сокращаясь, надгортанные мышцы препятствуют выходу набранного воздуха.

Виды мышечной ткани

Сердечная, гладкая и скелетная мышцы различаются своей структурой и функцией.

МЫШЕЧНОЕ ВОЛОКНО

Сократительная единица, образованная клеткой (гладкаямышца) или объединением различных клеток (сердечная и скелетная мышцы), чьи внутренние элементы ответственны за сокращение (белок актин и миозин).

Сердечная мышца

Под действием сердечной мышцы происходит накачивание крови для ее дальнейшего распределения по организму.

Волокна сердечной мышцы поперечнополосатые (под электронным микроскопом видны линии, придающие мышцам такой вид), устойчивые к усталости. Сокращение сердца происходит непроизвольно, а частота биений регулируется в зависимости от потребностей и состояния организма.

Сердце, как мышца, может улучшать свою трофику и сопротивляемость перед усилием. Аэробные упражнения, заставляющие работать большие группы мышц в течение не менее 20 минут (бег, езда на велосипеде, плавание и т. д.), укрепляют сердечную мышцу.

Гладкая мышца

Гладкие мышцы находятся, например, в стенках артерий или полых внутренних органов. Как и сердечная, гладкая мускулатура регулируется вегетативной нервной системой. Волокна гладкой мышцы имеют форму веретена. Их сокращение также является
Страница 9 из 13

непроизвольным.

Сокращение гладкой мускулатуры кровеносных сосудов способствует сужению просвета артерий, что в свою очередь увеличивает скорость прохождения крови и повышает артериальное давление. С помощью этого механизма организм реагирует на внутренние и внешние воздействия.

Если говорить о внутренних органах, сокращение гладкой мускулатуры обеспечивает перистальтику, к примеру способствуя равномерному смешиванию соляной кислоты с едой в желудке или перемещению пищевого комка по кишечнику.

Скелетная мышца

Мышечные волокна скелетной мускулатуры состоят из десятков клеток, соединенных между собой, и имеют трубчатую форму.

Сокращение скелетных мышц происходит вдоль направления волокон, в связи с чем ориентация волокон дает ценную информацию для понимания того, какие движения способны производить скелетные мышцы.

Например, при сокращении ромбовидных мышц, лопатки перемещаются вниз по направлению к центральной линии тела (смотри с. 90).

Виды сокращения мышц

Информация, которую получают некоторые малые мышцы, как, например, мышцы лица или руки, передается через один нерв. Этот единственный путь связи провоцирует одновременное сокращение всех мышечных волокон, когда двигательный импульс достигает мышцы.

Наоборот, большие мышцы, например, длинная мышца спины, большая грудная мышца, паравертебральные мышцы и т. д., имеют множественную иннервацию. Благодаря этому волокна, имеющие различную иннервацию, способны сокращаться по отдельности. В результате каждое движение будет отличаться в зависимости от того, сократилась ли вся мышца целиком или только какой-то из ее отделов.

Кроме того, уровень интенсивности действия одного из отделов может отличаться от уровня интенсивности действия другого отдела, так как интенсивность импульса различается от одного импульса к другому. Например, при желании совершить движение плечами назад (рисунок 1) трапециевидная мышца сокращается, при этом интенсивность сокращения средних волокон мышцы оказывается выше.

Координация мышц

Для того чтобы скелетные мышцы выполняли свои основные функции, позволяя нам взаимодействовать с окружающей средой и перемещаться, необходимо сознание, так как действие этих мышц является произвольным. Однако часть сократительной деятельности мышц регулируется головным и спинным мозгом (через рефлекторные дуги) без участия воли человека. Это касается активации соответствующих мышц и регуляции уровня мышечного напряжения, а также координации при совершении движения.

Речь идет о комплексном механизме, при котором интенциональность сочетается с внутренними процессами, тесно связанными с постуральными паттернами и заученными движениями (смотри с. 265).

Например, при ходьбе нет необходимости отдавать команду каждой мышце, когда и как действовать для выполнения движения. Достаточно подумать о действии, чтобы инициировать последовательное сокращение соответствующих мышц: поясничных мышц для сгибания бедра, четырехглавой мышцы для разгибания колена, передней большеберцовой мышцы для дорсального сгибания голеностопа и т. д. (рисунок 2).

Мозг получает информацию от чувствительных рецепторов мышц и суставов, которую использует для регуляции положения, отдавая команду активации соответствующим мышцам. Мозг играет важную роль в поддержании равновесия и координации действий мышц во время движения. Кроме того, он осуществляет соответствующую координацию между агонистами и антагонистами.

Тонус и трофика мышц

«Мышечный тонус отмечается постоянным состоянием легкого сокращения полосатых мышц и служит фоном двигательной и постуральной активности» (Стамбек, 1979).

Даже когда тело находится в покое, мышцы поддерживают определенный уровень напряжения, или тонуса. Это явление, регулируемое нервной системой, особенно необходимо для поддержания или стабилизации определенного положения, а также быстрого и плавного совершения возможного движения, независимо от того, рефлекторное оно или произвольное.

Тонус имеет большую значимость в восприятии схемы тела человека через ощущения, передаваемые рецепторами восприятия (орган Гольджи и мышечное веретено).

Трофика – это питание органов, непосредственно зависящее от их объема, в данном случае объема мышц, и их способности генерировать силу.

ГИПЕРТРОФИЯ МЫШЦ

Увеличение клеток мышцы и, как следствие, увеличение размера мышцы. Мышечная гипертрофия может быть вызвана увеличением функциональной потребности или специфическим гормональным стимулом.

АТРОФИЯ МЫШЦ

Уменьшение объема мышц по причине болезни или гиподинамии.

Атрофия мышц представляет собой процесс, при котором снижается объем мускулатуры и с которым ассоциируется определенный уровень слабости (разница в способности генерировать мышечную силу и усталость или преждевременное истощение при выполнении физической активности).

Дистрофия мышц может быть обусловлена различными факторами.

• Отсутствие или значительное снижение уровня физической активности, происходящее

у большинства людей пожилого возраста.

• Более или менее продолжительный период общей неподвижности (при многочисленных травмах, в постоперационном периоде и т. д.) или местной неподвижности (ношение гипса).

• Определенные структурные изменения в результате компрессии нервных корешков при грыже диска, артрозе или сдавливании позвонков.

Постуральный контроль и равновесие

Существуют две системы, отвечающие за поддержание стабильности или равновесия тела:

• Одной из них является автоматическая система постуральной регуляции. Органы равновесия (полукружные каналы) и зрения и механорецепторы работают совместно для подачи в центральную нервную систему необходимой информации для регуляции деятельности соответствующих мышц.

• Другая система основана на сознательных умственных процессах, отвечающих за обеспечение необходимых действий в определенной ситуации. Данные процессы основаны на предыдущем опыте, зафиксированном центральной нервной системой.

Полукружные каналы

Полукружные каналы расположены во внутреннем ухе. Его три структуры в форме кольца, по одному в каждой плоскости пространства, заполнены жидкостью. При изменении положения головы полукружные каналы срабатывают как нивелиры, используемые в строительстве, указывая угол наклона в трех плоскостях: горизонтально (Х), вертикально (Y) и в глубину (Z).

Зрение

Глаза получают информацию обо всех положениях тела относительно горизонтальной поверхности и окружающих предметов. Если мы стоим на одной ноге с закрытыми глазами, мы можем оценить важность данной системы в поддержании равновесия.

Проприоцептивная система

Проприоцептивная система, называемая «шестым чувством», содержит бесконечное количество нервных рецепторов (механорецепторов), расположенных в суставах, мышцах и сухожилиях. Данные рецепторы отвечают за сбор информации о пространственном положении тела (суставные рецепторы) и изменении напряжения и длины мышечно-сухожильных соединений.

Постуральная стабилизация

В выполнение какого-либо действия вовлечены
Страница 10 из 13

три различные группы мышц: двигательные, отвечающие за выполнение движения, стабилизирующие, отвечающие за равновесное расположение частей тела относительно друг друга, и постуральные, чья функция заключается в поддержании вертикального положения тела и преодолении силы тяжести.

Постуральные мышцы являются в первую очередь самыми глубокими: длинная мышца шеи, прямые передние мышцы, затылочная мышца, паравертебральные мышцы, подвздошно-реберная, длинная мышца спины и пояснично-подвздошная мышца. Они предназначены для того, чтобы, сокращаясь в течение долгого периода времени, поддерживать «фундамент», отталкиваясь от которого действуют двигательные и стабилизирующие мышцы. При отсутствии соответствующей трофики глубокие мышцы относительно легко устают, вызывая перегрузку поверхностных мышц (выполняющих часть их работы), более подготовленных к точным движениям, чем к длительному сокращению.

ПОСТУРАЛЬНЫЕ, ДВИГАТЕЛЬНЫЕ И СТАБИЛИЗИРУЮЩИЕ МЫШЦЫ

Для того чтобы понять взаимосвязь между двигательными и стабилизирующими мышцами, можно обратиться к модели простого механизма, основанного на сгибании локтевого сустава.

При совершении данного движения некоторые мышцы, влияющие на положение плечевого сустава, должны быть задействованы для стабилизации данного сустава и предупреждения смещения руки кзади (А).

На следующем рисунке (В) можно увидеть положение руки без стабилизации плеча.

Стабилизирующая, постуральная и двигательная активность мускулатуры чрезвычайно сложна при осуществлении повседневной деятельности. Эта активность влияет на многочисленные суставы, постоянно регулирует тонус, заставляя мышцы сокращаться синергично относительно друг друга в зависимости от положения тела и требований данной ситуации.

ДЕЙСТВИЕ МЫШЦ ПРИ ОПОРЕ НА ОДНУ НОГУ

• Отводящие мышцы слева изначально являются двигательными мышцами. Они перемещают таз и все туловище при наклоне, а затем выполняют функцию стабилизаторов для поддержания положения (1).

• Отводящие мышцы справа для поддержания равновесия тела перемещают ногу в сторону, противоположную наклону туловища (2).

• Брюшные мышцы, квадратная поясничная мышца, паравертебральные мышцы, подвздошно-реберная мышца и длинная мышца спины справа поддерживают позвоночник прямо, удерживая его от наклона влево (2). Кроме того, эти мышцы поддерживают положение таза, действуя вместе с отводящими мышцами слева (1).

• Затылочные и шейные мышцы преимущественно слева стабилизируют положение головы и шейных позвонков (4).

• Отведение рук, за которое ответственны дельтовидные и надостные мышцы (5), помогает поддерживать равновесие тела.

• Обе руки, в свою очередь, стабилизируются мышцами спины (верхняя порция трапециевидной – 4, ромбовидные – 6, поднимающая лопатку – 7) в подвешенном, не расслабленном положении, необходимом для быстрой реакции на изменение тонуса и движения верхних конечностей для удержания равновесия.

• Дорсальные мышцы предплечья поддерживают кисть на одной линии со всей рукой (8).

• Мышцы, расположенные ниже колена, принимают активное участие в контроле равновесия (9) благодаря постоянной регуляции и координации сокращений (если встать на одну ногу, можно почувствовать действие этих мышц и постоянные движения лодыжки).

1. Отводящие мышцы слева

2. Отводящие мышцы справа

3. Брюшные мышцы, квадратная поясничная мышца и паравертебральные мышцы

4. Затылочные и шейные мышцы

5. Дельтовидные и надостные мышцы

6. Ромбовидные мышцы

7. Мышца, поднимающая лопатку

8. Дорсальные мышцы предплечья

9. Мышцы ноги

Фиксация мышц и движение

Отделы, в которых мышцы крепятся к костям, получили название «начало» и «место прикрепления». «Начало» мышцы обычно расположено более краниально (ближе к голове) или медиально (ближе к средней линии тела), чем «место прикрепления», находящееся на другой кости.

Если известны начало и место прикрепления мышцы, а также траектория, которую она описывает (ориентация волокон), мы автоматически можем сделать предположение о постуральном влиянии, оказываемом указанной мышцей на скелет, и движениях, которые она может выполнять. Для этого можно представить, как соединяются место прикрепления и начало (или наоборот), и сделать вывод о том, какой вид движения произойдет.

Действие мышцы при сокращении имеет разное влияние на скелет в зависимости от активности стабилизирующих мышц. Если, например, сокращается верхняя порция трапециевидной мышцы одной из сторон, стабилизирующее действие позволит выполнить движение плечом, головой или их одновременное движение. Различные варианты изложены далее.

Сближение начала и места прикрепления

При изолированном сокращении мышцы без действия стабилизирующих мышц происходит укорочение мышечного брюшка, провоцирующее сближение начала и места прикрепления.

При сокращении верхней порции трапециевидной мышцы плечо поднимается вверх, а шейные позвонки осуществляют комбинацию движений наклона и поворота, сближая основание затылочной кости (начало – 1) с акромионом (место прикрепления – 2).

Приближение начала к месту прикрепления

При блокировании кости (в данном случае лопатки), к которой прикрепляется мышца, начало сместится в сторону сокращения мышцы, наклоняя и поворачивая голову и шейные позвонки.

Приближение места прикрепления к началу

При блокировании начала мышцы место прикрепления сместится в сторону сокращения мышцы. В данном случае верхняя порция трапециевидной мышцы поднимет плечо.

Двустороннее сокращение

Одновременная активность различных мышц изменяет результат, который получился бы, если бы каждая мышца действовала по отдельности. Двустороннее сокращение верхней порции трапециевидной мышцы смещает голову кзади, производя разгибание шеи.

Эксцентричное сокращение

Эксцентричное сокращение происходит, когда начало и место прикрепления удаляются друг от друга, в то время как мышца сокращается. Например, при сгибании шейных позвонков голова наклоняется, задние шейные мышцы регулируют движение во избежание резкого опускания головы.

Несмотря на увеличение тонуса, необходимого для выполнения движения, начало и место прикрепления мышц отдаляются друг от друга.

На рисунке цифрами (1) и (2) отмечено изначальное расстояние между началом и местом прикрепления и (3) – конечное положение начала. Стрелками указано направление вытяжения, провоцируемого увеличением тонуса.

Движение в суставах

Мышцы могут вызывать движение в одном и более суставах в зависимости от своего расположения в теле.

Движение в одном суставе

Эти мышцы оказывают влияние только на один сустав:

• Средняя ягодичная (бедро).

• Малая ягодичная (бедро).

• Большая, длинная и короткая приводящие (бедро).

• Четырехглавая (колено), исключая переднюю прямую мышцу, также двигающую бедро.

Двустороннее сокращение малой ягодичной мышцы передвигает таз при антеверсии благодаря участию тазобедренного сустава.

Движение в двух суставах

Эти мышцы могут производить

движение в двух суставах:

• Прямая передняя
Страница 11 из 13

мышца четырехглавой мышцы (колено и бедро).

• Портняжная мышца (колено и бедро).

• Подколенные сухожилия (колено и бедро).

• Тонкая мышца (колено и бедро).

• Большая ягодичная (колено и бедро через подвздошно-большеберцовый тракт).

• Мышца, натягивающая широкую фасцию бедра (колено и бедро).

Портняжная мышца может действовать на бедро и колено одновременно.

Движение в нескольких суставах

Большинство мышц, присоединенных к позвоночнику, вызывают движение в более чем двух суставах. Движение позвонков подразумевает использование суставов между ними.

Биодинамика мышц

В теле человека имеется 650 скелетных мышц, расположенных в различных слоях, начиная с поверхностного слоя (трапециевидная, широчайшая мышца спины и т. д.) и заканчивая глубоким слоем (паравертебральные мышцы). Все мышцы снаружи покрыты мембраной из соединительной ткани, называемой апоневрозом, которая отделяет мышцу от ее окружения, помогает избежать трения между мышцами во время движения. Кроме того, в мышцах присутствуют последовательные концентрические апоневротические слои, которые уплотняют и поддерживают единство внутримышечной структуры (мышечные волокна и пучки волокон).

Также существует так называемые «фасции», объединяющие различные мышцы или группы мышц для эффективного взаимосвязанного производства движений, в которое данные мышцы вовлечены. К примеру, при сгибании локтя активируются мышцы плеча и предплечья, обе группы мышц покрыты фасциями, которые усиливают напряжение и объединяют усилия для выполнения движения.

В целом во время движения мышцы не могут действовать изолированно. Они действуют взаимосвязанно. Например, в сгибании грудопоясничного отдела позвоночника, когда мы наклоняемся к полу, участвуют прямые мышцы живота, наружные и внутренние косые мышцы, подвздошно-поясничная мышца, передняя прямая мышца четырехглавой мышцы и портняжная мышца.

БИОДИНАМИКА МЫШЦ

Биодинамика мышц исследует движения тела, основанные на действии, совершаемом мышцами для производства данных движений.

Изучение движения

Существует два различных подхода к изучению движения тела:

• Функциональный подход. Изучаются мышцы, участвующие в производстве конкретного движения.

• Аналитический подход. Анализируются не движения, в которых принимают участие определенные мышцы, а движения, которые способна производить отдельная мышца самостоятельно, независимо от других мышц. Такое исследование является фиктивным, так как в действительности мышцы редко работают изолированно.

Однако данный подход позволяет более точно определить физиологию исследуемых мышц (различные движения, в которых принимают участие мышцы и суставы, на которые влияют определенные мышцы).

В данной главе рассматриваются оба подхода. Далее изложен функциональный подход. Аналитический подход приведен на следующих страницах с описанием каждой мышцы.

Ретропульсия головы

Ретропульсия головы происходит посредством выпрямления шейного изгиба. Ответственными за движение являются шейные мышцы: длинная мышца шеи, прямые передние малая и большая мышцы и прямая боковая мышца головы.

Сгибание шейного отдела

Сгибание шеи происходит посредством сокращения мышц, участвующих в ретропульсии, кивательной мышцы, относящейся к поверхностному слою.

Антепульсия головы

Затылочные мышцы и кивательная мышца перемещают голову кпереди за счет разгибания первых шейных позвонков по отношению к атланту, с одной стороны, и сгибания средних и нижних шейных позвонков, с другой стороны (смотри с. 35).

Разгибание шейного отдела

В разгибании шеи участвует большое количество мышц, в том числе мышцы поверхностного слоя (верхние порции трапециевидных мышц и кивательные мышцы) и более глубоких слоев (мышцы затылка, паравертебральные шейные, мышцы, поднимающие лопатку, длинная мышца спины и лестничные мышцы).

Наклон шейного отдела

Мышцами, осуществляющими наклон шеи в сторону, являются верхняя порция трапециевидной мышцы, паравертебральные шейные, мышцы затылка, мышца, поднимающая лопатку, лестничные мышцы, кивательная мышца и длинная мышца спины (шейная часть). Все мышцы на той стороне, в которую направлено движение.

Поворот шейного отдела

Кивательная мышца и прямые передние малая и большая мышцы головы являются мышцами переднего отдела, отвечающими за поворот шеи. К мышцам бокового и заднего отделов, участвующим в осуществлении данного движения, относятся лестничные мышцы, мышца, поднимающая лопатку, паравертебральные мышцы и верхняя порция трапециевидной мышцы.

Сгибание грудопоясничного отдела

Грудной и поясничный отделы совместно участвуют в осуществлении движений туловища.

Прямая передняя мышца живота является двигательной мышцей, которая совместно с косыми мышцами живота отвечает за осуществление сгибания грудопоясничного отдела.

Разгибание грудопоясничного отдела

Разгибание грудопоясничного отдела осуществляется за счет двустороннего сокращения паравертебральных мышц, подвздошно-реберной мышцы, длинной мышцы спины и широчайшей мышцы спины.

Наклон грудопоясничного отдела

В основном за осуществление наклона в сторону в грудопоясничном отделе отвечают квадратная мышца поясницы и паравертебральные мышцы. Чем больше усилий прилагается для производства движения, тем выше вовлеченность и уровень сокращения вспомогательных мышц, участвующих в данном движении (подвздошнореберной, длинной мышцы спины, широчайшей мышцы спины и косых мышц живота).

Сила притяжения способствует осуществлению данного движения (особенно при выполнении из положения стоя или сидя без опоры на спину), и, таким образом, нагрузка на мышцы снижается.

Поворот грудопоясничного отдела

Основными мышцами, отвечающими за поворот грудопоясничного отдела, являются внутренняя косая мышца живота (со стороны направления движения), наружная косая мышца живота (со стороны, противоположной направлению движения) и паравертебральные мышцы с соответствующей стороны (отсутствуют на рисунке). Подвздошнореберная, длинная мышца спины и широчайшая мышца спины действуют как вспомогательные.

Антеверсия таза

Паравертебральные поясничные мышцы являются основными двигательными мышцами, которые вместе с квадратной поясничной, подвздошно-реберной и длинной мышцей спины данного отдела осуществляют антеверсию таза. Подвздошно-поясничная, портняжная, мышца, натягивающая широкую фасцию бедра, прямая передняя мышца четырехглавой мышцы и приводящие мышцы бедра также участвуют в антеверсии, хотя в положении стоя их активность очень низка или равна нулю. Они приобретают большое значение, когда движение выполняется из положения лежа на спине.

Ретроверсия таза

Ретроверсия таза может осуществляться за счет сокращения больших ягодичных мышц, брюшных мышц или и тех и других мышц одновременно. Мышцы подколенного сухожилия (не показаны на рисунке) действуют в качестве вспомогательных мышц при осуществлении данного движения.

Наклон таза

Основными мышцами, отвечающими за
Страница 12 из 13

наклон таза в сторону, являются квадратная мышца поясницы и паравертебральные мышцы со стороны наклона. Подвздошно-реберная, длинная мышца спины, косые мышцы живота и широчайшая мышца спины действуют в качестве вспомогательных мышц.

Поворот таза

Поворот таза неразрывно влечет за собой поворот поясничного и грудного отделов, так как при перемещении таза осуществляется движение позвонков.

Поворот таза происходит за счет сокращения внутренней косой мышцы живота (со стороны, противоположной направлению движения), внешней косой мышцы живота (со стороны направления движения) и паравертебральных поясничных мышц. Подвздошно-реберная и длинная мышца спины данного отдела действуют в качестве вспомогательных мышц.

Мышцы шейного отдела

Трапециевидная мышца

Трапециевидная мышца – это поверхностная мышца шейного и грудного отделов. Она широкая и вытянутая. С функциональной точки зрения различают три различные порции мышцы (верхняя, средняя и нижняя). Каждая из них производит различные движения благодаря различному направлению своих волокон.

НАЧАЛО

• Основание затылочной кости.

• Задняя затылочная связка.

• Остистые отростки С7 – D12.

МЕСТО ПРИКРЕПЛЕНИЯ

• Ость лопатки.

• Акромион.

• Задний край ключицы.

ФУНКЦИИ

ВЕРХНЯЯ ПОРЦИЯ

• Разгибание шеи (двустороннее сокращение мышц).

• Комбинация разгибания, наклона в сторону (в сторону сокращающейся мышцы) и поворота шеи (в сторону, противоположную сокращающейся мышцы).

• Комбинация подъема лопаток (подъем плеча) и отведения.

• Участвует в подъеме руки в сторону и вперед.

СРЕДНЯЯ ПОРЦИЯ

• Приведение лопаток.

НИЖНЯЯ ПОРЦИЯ

• Комбинация опускания лопаток (опускание плеч) и отведения.

Мышца, поднимающая лопатку

Мышца, поднимающая лопатку, скрыта под трапециевидной мышцей. Она играет большую роль при поднятии плеч. При стрессе или перенапряжении, которому подвергается эта мышца в определенных рабочих положениях, ее часто сводит, что причиняет боль (смотри с. 179).

НАЧАЛО

• Поперечный отросток первых четырех шейных позвонков.

МЕСТО ПРИКРЕПЛЕНИЯ

• Медиальный угол лопатки.

ФУНКЦИИ

• Разгибание шеи (двустороннее сокращение мышц).

• Комбинация наклона в сторону и поворота шеи (оба движения в сторону сокращающейся мышцы).

• Комбинация подъема и приведения.

Мышцы затылка

Мышцы затылка, как и большая часть мышц, являются билатеральными (не показано на рисунке) и располагаются на различной глубине. Этими мышцами являются (перечислены от более поверхностных к более глубоким):

РЕМЕННАЯ МЫШЦА ШЕИ (2)

Начинается у поперечных отростков позвонков С1 и С2 и прикрепляется к остистым отросткам D4 – D6.

ОСТИСТАЯ МЫШЦА ШЕИ (2)

(смотри рисунок на с. 124) Начинается у остистых отростков позвонков С2 – С4 и прикрепляется к остистым отросткам D2 – D6.

ПОЛУОСТИСТАЯ МЫШЦА (3)

Начинается у основания затылочной кости и продолжается до поперечных отростков позвонков С3 – D7.

ПРЯМЫЕ ЗАДНИЕ МАЛАЯ (4) И БОЛЬШАЯ МЫШЦЫ ГОЛОВЫ (5)

Начинаются у основания затылочной кости и продолжаются до заднего бугорка атланта и остистого отростка эпистрофея соответственно.

РЕМЕННАЯ МЫШЦА ГОЛОВЫ (1)

Начинается у сосцевидных отростков и продолжается до остистых отростков позвонков С4 – D3.

КОСЫЕ ВЕРХНЯЯ (6) И НИЖНЯЯ МЫШЦЫ ГОЛОВЫ (7)

Верхняя мышца начинается у затылочной кости и прикрепляется к поперечному отростку

атланта. Нижняя мышца расположена между поперечным отростком атланта и остистым отростком эпистрофея.

ФУНКЦИИ

• Разгибание шеи (двустороннее сокращение мышц).

• Комбинация наклона в сторону и поворота шеи (в сторону активных мышц).

• Поворот шеи производится в противоположную сторону (верхняя косая мышца) (6).

• Полуостистая мышца (3) осуществляет только наклон в сторону сокращения, а остистая мышца является в основном разгибающей.

Кивательная мышца

Кивательная мышца – это поверхностная мышца, расположенная в боковой и передней части шеи. Она легко определяется визуально при движении головы в одну из сторон.

Данная мышца осуществляет разгибание шейных позвонков при анатомическом положении позвоночника (А). Если до этого шейный изгиб был выпрямлен под действием длинной мышцы шеи и прямой передней большой мышцы, кивательная мышца осуществляет сгибание шеи (В).

НАЧАЛО

• Сосцевидные отростки.

МЕСТО ПРИКРЕПЛЕНИЯ

• Грудина и ключицы.

ФУНКЦИИ

• Разгибание шеи. Увеличивает лордоз (двустороннее сокращение мышц).

• Сгибание шеи, если до этого лордоз был выпрямлен (двустороннее сокращение мышц).

• Сочетание наклона в сторону (в сторону сокращающейся мышцы) и поворота шеи (в противоположную сторону).

• Благодаря форсированному вдоху поднимает грудину и ключицу.

Лестничные мышцы

Лестничные мышцы – это мышцы, расположенные в глубоком слое бокового отдела шеи и сформированные тремя мышечными брюшками. Они участвуют в движениях шеи и в форсированном вдохе.

НАЧАЛО

• Поперечные отростки С2 – С7.

МЕСТО ПРИКРЕПЛЕНИЯ

• Передняя лестничная мышца: первое ребро.

• Средняя лестничная мышца: первое ребро.

• Задняя лестничная мышца: первое и второе ребра.

ФУНКЦИИ

• Разгибание шеи. Увеличивают лордоз (двустороннее сокращение).

• Комбинация наклона в сторону (в сторону сокращающейся мышцы) и поворота шеи (в противоположную сторону).

• Благодаря форсированному вдоху поднимают два первых ребра, вовлекая в движение нижние ребра.

Длинная мышца шеи

Кроме того, что длинная мышца шеи производит нижеописанные движения, она совместно с прямой передней большой мышцей участвует в поддержании изгиба шеи, учитывая тенденцию к усилению лордоза под действием силы притяжения (рисунок 1).

Упомянутые мышцы находятся в переднем отделе шеи и совместно с задними мышцами шеи (паравертебральными и мышцами затылка) действуют как четыре колонны, поддерживающие и стабилизирующие шею (рисунок 2).

НАЧАЛО

• Передний бугорок атланта.

• Тела позвонков С2 – D3.

МЕСТО ПРИКРЕПЛЕНИЯ

• Поперечные отростки позвонков С3 – С7.

ФУНКЦИИ

• Выпрямление лордоза (двустороннее сокращение мышц).

• Сгибание шеи (двустороннее сокращение мышц).

• Наклон шеи в сторону (в сторону сокращающейся мышцы).

Прямые передние малая и большая мышцы и прямая боковая мышца головы

Подобно длинной мышце шеи, прямая передняя большая мышца обеспечивает устойчивость шеи и предотвращает усиление лордоза.

НАЧАЛО

• Затылочная кость.

МЕСТО ПРИКРЕПЛЕНИЯ

• Атлант (прямая передняя малая мышца).

• Поперечные отростки С3 – С6 (прямая передняя большая мышца).

• Поперечный отросток атланта (прямая боковая мышца).

ФУНКЦИИ

ПРЯМАЯ ПЕРЕДНЯЯ БОЛЬШАЯ МЫШЦА

• Выпрямление лордоза. Сгибание шеи (двустороннее сокращение).

• Наклон в сторону и поворот шеи (в сторону сокращающейся мышцы).

ПРЯМАЯ БОКОВАЯ МЫШЦА ГОЛОВЫ

• Сгибание в атланто-затылочном соединении (двустороннее сокращение).

• Наклон в сторону в атланто-затылочном соединении (в сторону
Страница 13 из 13

сокращающейся мышцы).

ПРЯМАЯ ПЕРЕДНЯЯ МАЛАЯ МЫШЦА

• Сгибание в атланто-затылочном соединении (двустороннее сокращение).

• Наклон в сторону и поворот шеи (в сторону сокращающейся мышцы).

Мышцы спины

Ромбовидные мышцы

Ромбовидные мышцы находятся между трапециевидной и подвздошно-реберной мышцами.

Одной из функций этих мышц является укрепление плечевого пояса совместно с верхней порцией трапециевидной мышцы и мышцей, поднимающей лопатку.

НАЧАЛО

• Остистые отростки позвонков С7 – D4.

МЕСТО ПРИКРЕПЛЕНИЯ

• Медиальный край лопатки.

ФУНКЦИИ

• Комбинация приведения с небольшим подъемом лопаток (плечи перемещаются назад, способствуя выпрямлению грудного отдела позвоночника) (двустороннее сокращение мышц).

• Приведение и отведение лопаток.

Широчайшая мышца спины

Широчайшая мышца спины расположена на той же глубине, что и ромбовидные мышцы, под нижней порцией трапециевидной мышцы.

Она участвует в движениях туловища, как и руки, посредством плечевого сустава.

НАЧАЛО

• Остистые отростки D7 – L5.

• Крестец.

• Подвздошная кость.

• Внешняя поверхность четырех последних ребер.

МЕСТО ПРИКРЕПЛЕНИЯ

• Межбугорковая борозда (плечевой кости).

ФУНКЦИИ

• Разгибание грудопоясничного отдела позвоночника (двустороннее сокращение мышц).

• Комбинация наклона с легким поворотом и разгибанием грудопоясничного отдела (в сторону сокращающейся мышцы).

• Комбинация разгибания, приведения и поворота внутрь плеча.

• Наклон таза.

Подвздошно-реберная мышца – длинная мышца спины – паравертебральные мышцы

Подвздошно-реберная, длинная мышца спины и паравертебральные мышцы – это мышцы глубокого слоя, контактирующие с ребрами и позвонками. Они имеют сложную структуру благодаря многочисленным точкам начала и местам прикрепления.

ПОДВЗДОШНО-РЕБЕРНАЯ ИЛИ ПОЯСНИЧНО-КРЕСТЦОВАЯ МЫШЦА

Она начинается у поперечных отростков позвонков С4 – С6 задней поверхности ребер. Прикрепляется к поперечным отросткам первых поясничных позвонков, к подвздошной кости и грудопоясничной фасции (мощная общая сухожильная структура, прикрепляющая подвздошно-реберную мышцу, длинную мышцу спины и поперечную мышцу живота к крестцовой кости).

ДЛИННАЯ, ИЛИ ДЛИННЕЙШАЯ МЫШЦА СПИНЫ

Она начинается у сосцевидного отростка, остистых отростков позвонков С2 – D12 и ребер. Прикрепляется с грудопоясничной фасции и остистым отросткам поясничных позвонков.

ФУНКЦИИ

• Разгибание позвоночника (двустороннее сокращение мышц).

• Комбинация наклона и поворота позвоночника в сторону сокращающейся мышцы.

• Антеверсия таза (двустороннее сокращение).

• Форсированный выдох (подвздошно-реберная и длинная мышца спины).

ПАРАВЕРТЕБРАЛЬНЫЕ МЫШЦЫ

Эти мышцы расположены вдоль всего позвоночного столба с обеих сторон остистых отростков, часто они заметны визуально. Следующие мышцы образуют часть паравертебральной мускулатуры:

ОСТИСТЫЕ МЫШЦЫ СПИНЫ

Они начинаются у остистых отростков позвонков D2 – D8 и прикрепляются к остистым отросткам позвонков D10 – L3.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (http://www.litres.ru/aleks-monasterio-uria/diagnostika-i-lechenie-pozvonochnika-unikalnaya-sistema-doktora-a-m-uria/?lfrom=279785000) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Здесь представлен ознакомительный фрагмент книги.

Для бесплатного чтения открыта только часть текста (ограничение правообладателя). Если книга вам понравилась, полный текст можно получить на сайте нашего партнера.