Режим чтения
Скачать книгу

Бластинг. Гид по высокоэффективной абразивоструйной очистке читать онлайн - Дмитрий Козлов

Бластинг. Гид по высокоэффективной абразивоструйной очистке

Дмитрий Юрьевич Козлов

Гид по высокоэффективной абразивоструйной очистке является учебным пособием как для начинающих, так и для опытных абразивоструйщиков.

Д. Ю. Козлов

Бластинг. Гид по высокоэффективной абразивоструйной очистке

«Бластинг» – это первое издание на русском языке по подготовке поверхностей перед окрашиванием с помощью абразивоструйной очистки.

Гид написан на основе многочисленных испытаний производителей оборудования, доказывающих влияние различных параметров на производительность очистки. Издание содержит описание элементов абразивоструйной системы и является руководством для достижения высокопродуктивной абразивоструйной обработки; ценность издания, в этой связи, для практического использования безгранична.

«Бластинг» – это ваш путеводитель в мир эффективной абразивоструйной очистки, содержащий сведения, полезные как для опытных операторов, так и для новичков.

Введение

Идеальная защита от коррозии на 80 % обеспечивается правильной подготовкой поверхности, и только на 20 % качеством используемых лакокрасочных материалов и способом их нанесения.

    ISO

18 октября 1870 в США был выдан патент на метод пескоструйной очистки, позже в этом же году аналогичный патент был получен в Великобритании. Автором метода является американский изобретатель английского происхождения Бенджамин Чу Тилгман (Benjamin Chew Tilghman). Так на смену всевозможным методам очистки поверхностей – пришла эра Бластинга.

Данное руководство по абразивоструйной обработке было написано после многочисленных испытаний, доказывающих влияние различных параметров на производительность. Данная книга была задумана как руководство для достижения высокопродуктивной абразивоструйной обработки, при этом как доступное для понимания краткое изложение важных элементов абразивоструйной системы.

«Бластинг» – это первая книга о методике очистки абразивоструйным методом изданная в России.

Бластинг включает в себя подробное описание методов эффективной абразивоструйной обработки для введения новичков в суть процесса, а также информацию о современных технологиях для более опытных пользователей. В издании содержится множество указаний на то, как получить оптимальную производительность при проведении работ по подготовке поверхностей. Кроме того, руководство включает в себя наглядные пособия, которые могут быть полезны при выборе особых параметров, подходящих для конкретных случаев применения. Данное издание также содержит напоминания о технике безопасности и большое количество справочной информации для операторов и инспекторов оборудования по абразивоструйной очистке. Помимо этого в книгу включены многочисленные дополнительные источники информации по абразивоструйной обработке.

Однако существует ряд тем, которые данная книга не освещает. Так, «Бластинг» не может служить руководством в комплексной системе обучения абразивоструйной очистке. Процесс очистки состоит из множества сочетаний элементов и различных применений, которые невозможно в полной мере отразить в первом издании. В конечном итоге, сам пользователь с помощью проведения различных испытаний и тестов, должен принять окончательное решение в выборе сочетания элементов, наиболее подходящих для выполнения определенного вида работ. Потребитель должен пройти соответствующее обучение, иметь доступ ко всей имеющейся в наличии полезной информации и приобрести практический опыт, перед тем как он сможет принимать оперативные решения в рамках какого-либо проекта.

«Бластинг» не претендует на полное освещение проблемы техники безопасности при проведении абразивоструйных работ. Техника безопасности формируется после основательного изучения всех материалов, касающихся конкретного вида струйной обработки, и включает в себя описание самих работ, местное и государственное правовое регулирование, условия места проведения работ и, конечно, руководства по эксплуатации на все виды оборудования, используемого для проведения работ. У каждого производителя есть свои особенности в конструкции оборудования. Перед использованием оборудования необходимо тщательно изучить руководство по эксплуатации, будь то абразивоструйный аппарат или сопутствующая ему техника, например, компрессоры и технологические устройства. Потребитель должен использовать все виды тренингов, видеофильмы и другие материалы, которые помогут ему овладеть техникой безопасности при абразивоструйной обработке.

Мы не ставили цель описать все существующие правила абразивоструйной обработки. Существуют нормы, касающиеся загрязнения воздуха, воды, почвы; техника безопасности оператора и окружающих; конструктивные ограничения оборудования; ограничения по токсичным выбросам; информационные знаки для работников и другие вопросы, которые могут быть очень важны в определенных ситуациях. Данные нормы различны в каждом регионе. Пользователи оборудования должны самостоятельно ознакомиться со всеми соответствующими правилами.

Информация о технике безопасности присутствует на протяжении всего издания, в четвертом разделе подробно описана ответственность оператора и работодателя при обучении безопасному и продуктивному использованию систем струйной очистки. Приложение включает в себя справочный раздел с дополнительными данными.

1. Технология и случаи применения

Технология

При абразивоструйной обработке абразивные частицы ускоряются из абразивоструйного аппарата при помощи энергии сжатого воздуха. Для того чтобы посредством абразивных частиц и сжатого воздуха обеспечить эффективную очистку, требуется профессиональное мастерство, высококлассное оборудование и контроль качества. Каждый элемент влияет на результат работы всей системы.

Даже несоответствие одного элемента ограничивает работу системы в целом.

Данная книга подчеркивает необходимость поддержания давления и объема подаваемого воздуха на всей установке.

Система абразивоструйной очистки состоит из трех основных компонентов: компрессор, струйный аппарат и абразив (смотрите Приложение 1: «Составляющие рабочего места абразивоструйщика»).

Компрессор должен создавать достаточное давление и объем воздуха для того, чтобы переместить абразив из абразивоструйного аппарата на обрабатываемую поверхность. Абразивный порошок засыпается в абразивоструйный аппарат и посредством дозирующего клапана подается в воздушный поток, на пути которого не должно быть препятствий. Желаемый результат обработки поверхности достигается посредством регулирования силы сжатого воздуха, воздействующей на абразив. Очистка напрямую зависит от того, насколько эффективно воздух движется из компрессора на очищаемую поверхность. Помеха хотя бы в одном элементе вызывает снижение продуктивности целой системы.

Подрядчики часто не рассматривают абразивоструйный аппарат как возможный источник ограничения подачи воздуха и потока абразива. Воздух под высоким давлением не может проходить через фитинги малого диаметра в таком же объеме, как при фитингах большого диаметра.

Роль
Страница 2 из 10

абразивоструйного аппарата состоит в том, чтобы равномерно дозировать абразив в воздушный поток. Иногда подрядчики монтируют фитинги, ограничивающие поток воздуха и дозирующие клапаны, которые сокращают воздушный поток наполовину, а в итоге не могут понять, почему производительность снизилась. Данной проблемы можно избежать, выбрав струйный аппарат с трубками, фитингами и клапанами большого диаметра и подсоединив его к шлангу для подачи сжатого воздуха и соплу также большего диаметра.

Другой очень важный элемент в системе абразивоструйной очистки – это абразив. В конечном итоге, очистка поверхности зависит именно от используемого абразива. Выбирайте абразив соответствующей формы, размера, твердости, плотности и состава. Подрядчики, выбирающие неподходящий абразив, рискуют получить перерасход средств, нарушение окрасочного слоя и дорогостоящую повторную обработку.

При обработке поверхности следует тщательно подбирать абразивный материал и размер его частиц для того, чтобы обеспечить наилучший результат по скорости очистки и экономической эффективности работ.

Самый лучший воздушный компрессор и абразивоструйный аппарат не смогут компенсировать неправильный выбор абразива (смотрите раздел «Абразивные материалы», где описаны рекомендации по выбору абразива).

Известная поговорка гласит: «Где тонко, там и рвется», – и ее можно применить к выбору абразивоструйного оборудования. Качество и производительность ключевых элементов влияет на эффективность системы в целом.

Большинство элементов системы абразивоструйной очистки имеют цилиндрическую форму. Даже небольшое изменение диаметра данных элементов влечёт за собой уменьшение объема воздуха, проходящего сквозь них, в геометрической прогрессии.

Даже при выборе компрессора и абразивоструйного аппарата необходимой мощности и соответствующего абразива, требуется мастерство и профессионализм оператора для того, чтобы система работала максимально продуктивно.

Применение

Абразивоструйная очистка делится на три составляющих: подготовка поверхности, очистка и отделка поверхности, а так же дробеструйное упрочнение.

Подготовка поверхности

При очистке ненужные материалы удаляются, и поверхность становится подготовленной для нанесения покрытий.

При помощи абразивоструйной очистки с металлических конструкций удаляют старую краску, ржавчину и другие загрязнения. Кроме того, при струйной очистке удаляется вторичная окалина, которая образуется на новой стали.

Угловатые частицы абразива придают шероховатость поверхности и создают профиль, или насечку. Большинство производителей красок указывают, каким должен быть профиль, чтобы обеспечить эффективное нанесение их продукции. Более подробно профиль поверхности будет обсуждаться далее.

Подрядчики очищают кирпичную кладку перед нанесением шпатлевки или краски. Абразивоструйная очистка наружной штукатурки и кирпича позволяет удалять старую краску, плесень, копоть, красящие вещества и даже граффити, оставляя при этом идеальную поверхность для нанесения покрытия.

Подрядчики очищают преднапряженные железобетонные панели, монолитные бетонные стены, колонны и другие конструкции из бетона для того, чтобы удалить остаточный цемент, следы строительной опалубки, выцветшие участки и обнажить бетон.

Кроме обработки стали и каменной кладки, при помощи абразивоструйной очистки можно снять верхние слои краски с деревянных домов и лодок. Со стекловолокна с помощью данной очистки обычно удаляют верхний слой гелевого покрытия для того, чтобы сделать видимыми пузырьки воздуха. При абразивоструйной очистке алюминия, титана, магния и других металлов удаляют коррозию и, в зависимости от выбранного абразива и давления, наносят профиль.

Новые, более мягкие виды абразива (включая пластик и пшеничный крахмал), а также специальное абразивоструйное оборудование с низким давлением используются для сухого способа удаления покрытий с современных композиционных материалов. Это позволяет компаниям очищать самолеты, вертолеты, автомобили, грузовики и лодки без использования абразивоструйной обработки, которая может нарушить структуру поверхности. Кроме того, переход на сухой способ очистки верхних слоев исключает возможность воздействия на рабочих токсических химических веществ, используемых при очистке, и исключает расходы, связанные с утилизацией опасных отходов.

Перечень возможностей абразивоструйной очистки кажется бесконечным. Каждый день сотни компаний прибегают к помощи абразивоструйной очистки для того, чтобы решить проблемы долговременной очистки и подготовки поверхности. Поскольку в промышленности регулярно изобретаются новые материалы и возникает потребность в обработке новых поверхностей, производителям абразивоструйной техники и материалов приходится непрерывно совершенствовать свои технологии и оборудование.

Очистка поверхности и отделочная обработка

Очистка поверхности и отделочная обработка значительно отличаются от процесса подготовки поверхности. Отличие заключается в том, что ожидаемый результат состоит в совершенствовании внешнего вида продукции и его полезности, а не просто в его подготовке к нанесению покрытий или к сборке. Очистка поверхности включает в себя удаление загрязняющих веществ и окалины. Отделочная обработка поверхности включает удаление заусенцев с отлитых изделий, а также совершенствование внешнего вида продукции.

Абразивоструйная очистка с использованием стеклянных или керамических шариков в качестве абразивного материала позволяет создавать матовую поверхность и рельеф на мягких металлах.

На многих литейных предприятиях абразивоструйная очистка используется для удаления заусенцев с отлитых изделий с целью улучшения их функциональности и эстетического вида.

В большинстве случаев при абразивоструйной очистке выявляются микротрещины и дефекты в металлах. Это особенно важно для предприятий, занимающихся ремонтом и модернизацией шасси самолетов.

Мягкие материалы, такие, как резина и пластик, обычно изготавливаются с помощью специальных форм, после которых на них остаются неровности. Абразивоструйная очистка легко удаляет такие неровности, в результате чего получается гладкая однородная поверхность.

Абразивоструйная очистка широко применяется в отраслях промышленности, использующих повышенную температуру для закалки металлов. Высокие температуры могут обесцвечивать изделия. Абразивоструйная обработка позволяет удалять выцветшие участки и окалину с изделий, подвергшихся воздействию высоких температур.

Кроме того, абразивоструйная очистка может улучшить внешний вид продукции благодаря удалению различных пятен, отложений, коррозии и следов инструмента. При этом некоторые абразивные материалы позволяют делать внешний вид поверхности более однородным.

При высокой температуре образуется нагар и отложения отработанного масла на многих автомобильных деталях. Электродвигатели часто засоряются перегретыми изоляционными материалами и расплавленными слоями статора. В большинстве случаев сохранение исходных размеров данных деталей является
Страница 3 из 10

критичным. Абразивоструйная обработка с помощью пластиковых абразивных материалов, стеклянных шариков или натурального абразива удаляет загрязняющие вещества и обеспечивает желаемый результат.

Дробеструйное упрочнение

При изготовлении металлического изделия, для придания ему определённой формы, производители должны совершать множество действий, а именно: отливать, резать, сгибать, штамповать, прокатывать или сваривать металлы. Иногда все эти процессы вызывают на металлах остаточное напряжение, которое, если от него вовремя не избавиться, может стать причиной поломки изделий.

Дробеструйное упрочнение увеличивает прочность и долговечность деталей посредством их обработки абразивными материалами, имеющими сферическую форму и разогнанными до высокой скорости. К ним относятся: стальная дробь, керамическая дробь, стеклянные шарики и др.

Дробеструйное упрочнение создает эффект, похожий на удар по поверхности молотком. Отличием данного процесса является только то, что при упрочнении образуются более маленькие углубления и удары являются одинаковыми по интенсивности. Данная «бомбардировка» частицами абразива создает равномерно спрессованную поверхность, распределяя напряжение по всей площади поверхности и, тем самым, уменьшая вероятность ломкости металлов.

Дробеструйное упрочнение – это точная наука, требующая строгого соблюдения технических условий по твёрдости абразивного материала, продолжительности очистки, углу наклона сопла и необходимому давлению. Чрезмерное или недостаточное упрочнение детали может быть причиной преждевременного разрушения.

Упрочнение широко используется в автомобильной и авиационной промышленностях. Производители шестерней используют упрочнение для удаления заусенцев и острых граней и для того, чтобы зубья шестерней были более крепкими. Производители пружин используют упрочнение для снятия напряжения.

При дробеструйном упрочнении литых и штампованных металлических изделий очищается поверхность, выявляются дефекты и улучшается внешний вид. Упрочнение деталей с резьбой позволяет удалить заусенцы, острые грани и одновременно увеличить удерживающую способность резьбы. Упрочнение часто используется с безвоздушным оборудованием для удаления вторичной окалины с новой стали.

Технические условия по подготовке поверхности

Производители лакокрасочных материалов давно поняли важность подготовки поверхности для успешного использования их покрытий. Несоответствующая очистка стальной поверхности может стать причиной преждевременного разрушения покрытия. Именно поэтому производители лакокрасочной продукции детально излагают требования по подготовке поверхности перед нанесением их продукции. Кроме того, при отказе выполнять данные требования гарантия на качество покрытия может быть аннулирована.

Требования к подготовке стальной поверхности включают в себя два важных параметра: профиль поверхности и степень очистки.

Профиль поверхности

Производители лакокрасочных материалов и профессиональные организации испытывают лакокрасочные покрытия, применяя их при различных профилях поверхности и условиях окружающей среды. В результате исследований обнаружено, что для гарантированной адгезии и абсолютной защиты субстрата перед нанесением покрытия требуется обеспечить соответствующий профиль. Насечка обеспечивает прочное однородное сцепление между поверхностью и покрытием.

Рис. 1. Профиль поверхности

Частицы абразивного материала образуют на стальной поверхности крошечные пики и углубления. Глубина профиля зависит от размера, типа и твердости абразива, давления воздуха, расстояния и угла наклона сопла к очищаемой поверхности.

Когда профиль превышает допустимый уровень, то пики проявляются над поверхностью покрытия, приводя к его разрушению.

При увеличении слоя лакокрасочного покрытия для выравнивания глубокого профиля увеличивается себестоимость выполняемой работы. Более детальное описание профилей, образованных при использовании различных абразивов, изложено в разделе «Абразивные материалы».

Профиль выражается в милах, микронах и миллиметрах.

1 мил = 1/1 000 дюйма.

25 микрон = 1 мил.

25,4 миллиметра = 1 дюйм.

39 мил = 1 миллиметр.

В Соединенных Штатах Америки обозначение в милах используют как единицу измерения толщины покрытия и профиля поверхности. Обычно в спецификации указана средняя высота профиля. Например, средний профиль в 2 мила (50 микрон) может включать в себя профили от 1 мила (25 микрон) до 3 мил (75 микрон). Данная классификация профилей вполне приемлема, т. к. нет практического метода производства абразивных частиц одинакового размера.

Отклонения в давлении воздуха, расстоянии до поверхности или в угле наклона сопла также влияют на глубину профиля. Уменьшенное давление воздуха или увеличенное расстояние сопла от обрабатываемой поверхности является причиной небольшого размера профиля. При большом угле отклонения сопла будет лишь поверхностная обработка субстрата без отчётливых пиков и углублений. Для абразивоструйной обработки стали угол наклона сопла к поверхности должен быть 80–90 градусов.

Для определения глубины профиля поверхности используйте специальные измерительные приборы для того, чтобы документально подтвердить соответствие данного профиля заданному. Тщательный контроль глубины профиля поверхности поможет избежать дорогостоящей вторичной обработки.

Степени очистки

Требования к качеству подготовки металлической поверхности перед операциями окрашивания, нанесения металлизационных покрытий устанавливает ГОСТ 9.402-80 «Покрытия лакокрасочные. Подготовка металлических поверхностей перед окрашиванием». В ГОСТе выделяются четыре степени очистки поверхности черных металлов от окалины и продуктов коррозии:

1 – при осмотре с 6-кратным увеличением окалина и ржавчина не обнаруживаются;

2 – при осмотре невооруженным глазом не обнаруживаются окалина, ржавчина, пригар, остатки формовочной смеси и другие неметаллические слои;

3 – не более чем на 5 % поверхности имеются пятна и полосы плотно сцепленной окалины и литейная корка, видимые невооруженным глазом. На любом из участков поверхности изделия окалиной занято не более 10 % площади пластины 25х25 мм;

4 – с поверхности удалены ржавчина и отслаивающаяся окалина.

Этим степеням подготовки поверхности в основном соответствуют степени Sa3, Sa 2

/

, Sa 2, Sa1, устанавливаемые международным стандартом ISO 8501-1: 1988: «Подготовка стальной основы перед нанесением красок и подобных покрытий. Визуальная оценка чистоты поверхности. Степени коррозии и степени подготовки непокрытой стальной основы после полного удаления прежних покрытий».

Организация SSPC («Исследователи защитных покрытий») (США) установила пять степеней очистки при абразивоструйной обработке, классифицирующихся от полного удаления всех загрязняющих веществ до удаления только остаточных материалов с обрабатываемой поверхности. К данным пяти степеням очистки относятся: очистка до «белого металла», очистка до «почти белого металла», коммерческая очистка, промышленная очистка, поверхностная очистка. Данные
Страница 4 из 10

стандарты могут быть пересмотрены и исправлены. Но, несмотря на все это, они используются, как основные принципы. Для более подробного описания каждого из них можно обратиться к «Визуальным стандартам очистки стали с помощью абразивоструйной обработки».

Очистка до «белого металла» – это очистка, видимая без увеличения. Очищенная поверхность до «белого металла» представляет собой поверхность, с которой удалены все видимые загрязнения, а именно: ржавчина, вторичная окалина, краска и посторонние включения. Обычно данная степень очистки требуется при нанесении сложных покрытий (цинкосодержащие краски) на поверхности, подвергающиеся агрессивному воздействию коррозионной среды – химические установки, морские буровые установки и мосты над водой с повышенным содержанием соли.

Очистка до «почти белого металла» – это очистка, видимая без увеличения. Это поверхность, свободная от всех типов видимых загрязнений (ржавчины, вторичной окалины, краски и посторонних веществ). Данный вид очистки похож на очистку до «белого металла». Единственное отличие заключается в том, что на очищаемой поверхности допустимо не более 5 % загрязнений. Данный вид очистки применяется при использовании высокоэффективных покрытий на стальной поверхности, подвергающейся воздействию жесткой среды и интенсивному использованию.

Коммерческая очистка – это очистка, видимая без увеличения. Поверхность очищается от видимых нефтепродуктов, смазочных материалов, пыли, окалины, грязи, вторичной окалины, продуктов коррозии и посторонних веществ. При данной очистке на поверхности может остаться не более 33 % загрязненных участков, полос, обесцвечивания поверхности от пятен ржавчины, вторичной окалины и старых покрытий. Для большинства применений используются стандартные покрытия.

Промышленная очистка – это очистка, видимая без увеличения. Поверхность освобождается от всех видимых нефтепродуктов, смазочных материалов, пыли и грязи. Однако допускается до 10 % плотно прилипшей вторичной окалины, ржавчины и остатков покрытия, если они равномерно распределены. Оставшаяся часть поверхности может содержать следы загрязнений, полосы и обесцвечивания, вызванные пятнами ржавчины, вторичной окалины или старого покрытия.

Поверхностная очистка – видимая без увеличения. Поверхность, обработанная таким образом, может содержать плотно прилипшие остатки вторичной окалины, ржавчины или старого покрытия. Нет необходимости обнажать пятна металла, если субстрат состоит из неповрежденного покрытия. Данный метод приемлем для поверхностей, не подверженных воздействию суровых условий окружающей среды или там, где не ожидается длительный срок службы покрытия.

Там, где требуется коммерческая или поверхностная очистка, следует убедиться в том, что новое покрытие совместимо со старым. Несовместимые покрытия могут вызвать окалину или отслаивание.

Организация SSPC предлагает серию фотографий, которые иллюстрируют четыре существующих состояния стальной поверхности и степени очистки каждой. К существующим состояниям относятся: вторичная окалина, вторичная окалина и ржавчина, полная коррозия и коррозия с образованием углублений.

Национальная ассоциация инженеров-коррозионистов (NACE) предлагает набор герметизированных металлических купонов, которые служат в качестве образцов степеней очистки.

Печатное издание Шведского Института Стандартов (SIS) наглядных компараторов широко используется в Европе. Данные о степенях очистки и стандарты профессиональных организаций показаны в следующей таблице:

Термины «белый металл» или «почти белый металл» иногда создают путаницу между подрядчиками и инспекторами. Очищенная стальная поверхность – всегда серого цвета, а не белого. При очистке абразивом, имеющим светлую окраску, у поверхности может появиться белый оттенок. Абразив черного цвета обычно создает темный оттенок поверхности.

Неопытный инспектор может ошибочно забраковать работу, так как поверхность не «белая». До проведения очистки обязательно проинформируйте ревизора, каким абразивом вы планируете очищать, и спросите его, будет ли это влиять на оценку степени очистки поверхности.

В дополнение к обучению технике безопасности операторы абразивоструйного оборудования должны быть проинструктированы по стандартам подготовки поверхности. Причем, не только для того, чтобы успешно пройти контроль, а, прежде всего, для того, чтобы гарантировать, что покрытие будет нанесено на качественно подготовленную поверхность. Используйте дополнительную информацию, предоставленную организациями, указанными в разделе «Справочные материалы» в конце данной книги.

2. Абразивные материалы

Абразивные материалы приводятся в движение благодаря компрессору, хранятся и дозируются посредством струйного аппарата, перемещаются по рукаву и разгоняются с помощью сопла. Все элементы важны, но именно абразивы являются основным инструментом при выполнении работ.

Выбор соответствующего абразива крайне важен для получения желаемой отделки в течение выделенного времени и в рамках бюджета. В случае использования неподходящего абразивного материала можно получить некачественную отделку, что помешает выполнению всех работ и приведёт к необходимости дорогостоящей повторной обработки.

Во многих случаях причиной некачественно нанесённого покрытия является использование неподходящего абразивного материала. Самое лучшее оборудование не сможет компенсировать применение абразива, который не предназначен для выполнения данного вида работ.

Используйте высококачественные абразивные материалы, предназначенные для струйной обработки. Материалы, добытые с берегов рек или каменоломен (если они не были соответствующим образом промыты, просеяны и фракционированы), приведут к неприемлемому результату (смотрите Приложение 2 с «Таблицей сравнения абразивных материалов».

Свойства

Существует три вида абразивных материалов: природного происхождения, производственного и из побочных продуктов.

К природным абразивам относятся минеральные, такие как песок, кремень, гранат, цирконий и другие минералы.

Произведённые абразивы изготавливаются специально для струйной обработки. Среди них: колотая дробь и дробь литая, пластик, пшеничный крахмал, стеклянные шарики, оксид алюминия, карбид кремния и другие.

Абразивоструйные материалы на основе побочных продуктов являются результатом производственных процессов. Среди них – шлак, получаемый при выплавке металла или при производстве электроэнергии, а также материалы из продукции сельского хозяйства, используемой в пищевой индустрии.

В прошлом при проведении струйной очистки на открытом воздухе стремились использовать дешёвые абразивные материалы, такие, как песок. Однако нельзя использовать абразивы, которые содержат более одного процента свободного кварца. Кварцевая пыль может привести к серьёзным заболеваниям органов дыхания и летальному исходу. По возможности, следует применять рекуперируемый абразив. Рекуперируемые абразивные материалы, как правило, содержат меньше свободного кварца и не образуют большого количества пыли.

Для снижения затрат
Страница 5 из 10

на абразивные материалы следует выбирать прочный, подходящий для многократного использования, абразивный материал. Сегодня такие средства, как абразивоструйные аппараты с замкнутым циклом, вакуумное оборудование для сбора материала и портативные средства ограничения распространения материала помогают обеспечить эффективную регенерацию.

Размер

Размер гранул абразивоструйного материала имеет огромное значение для достижения равномерного рельефа и обеспечения желаемой текстуры поверхности. Производители абразивных материалов используют несколько совершенно различающихся систем для описания размера своей продукции.

Дробь и другие сферические материалы измеряются в тысячных долях дюйма, и размер выражается целыми числами. Некоторые производители для описания размера продукции используют числа, которые могут и не относиться к номеру сита (меша).

Обычно остроугольные абразивы и стеклянные шарики измеряются в соответствии с системой мер, относящейся к ситу, и выражаются в «номере сита» или «микронах». Под номером сита (мешем) понимается количество отверстий на дюйм в сите; в микронах выражается размер просеиваемых частиц. Поэтому, чем больше номер сита, тем меньше гранулы и, чем больше микрон, тем больше гранулы.

Например, через отверстия в сите номер 20 проходят частицы размером 850 микрон и менее, а через сито номер 40 проходят частицы размером 425 микрон. Поэтому большая часть гранул в абразивном материале с номером сита 20/40 будет иметь размер между 850 и 425 микрон, и лишь небольшая часть – немного больше или меньше. Никакая из систем рассеивания абразивных материалов не будет абсолютно точной, но производители, следящие за качеством продукции, обеспечивают 95 % гранул в заявленных пределах.

Соответствие заявленному размеру приобретает первостепенную значимость, когда производитель покрытия требует заданный профиль. Гранулы превышающего размера врезаются слишком глубоко, и над поверхностью остаются высокие пики. Это приводит к появлению ржавчины. В случае нанесения более толстого слоя краски, чтобы закрыть высокие пики, происходит потеря времени и средств.

Гранулы меньше заданного размера и пыль снижают производительность, не очищают поверхность и не дают поверхности требуемую насечку.

Для получения желаемой обработки нужно выбирать соответствующую фракцию гранул. Крупные гранулы используются для удаления нескольких слоёв краски, сильной коррозии или остатков цементного раствора и оставляют глубокий профиль. С помощью гранул среднего размера удаляются поверхностная ржавчина, неплотная краска или тонкий слой прокатной окалины. Небольшие гранулы образуют неглубокий профиль и идеальны для струйной обработки тонких металлических изделий, дерева, пластика и других чувствительных поверхностей.

Крупные гранулы не всегда чистят быстрее, чем маленькие. Хотя они и врезаются в поверхность глубже, при очистке абразивными материалами крупной фракции о квадратный сантиметр площади ударяется меньше частиц, и поэтому некоторые зоны поверхности будут не обработаны. Перед началом работы необходимо провести тестирование абразивов разной фракции на небольших участках поверхности. После этого измеряется профиль для определения того, какой из них больше соответствует техническому заданию.

При использовании рекуперируемых материалов рабочий объём необходимо регулярно пополнять для обеспечения соответствующей обработки и оптимальной производительности. Новый абразивный материал наносит однородный рельеф, но с каждым рабочим и регенерационным циклом частицы становятся меньше. Если оставить данный процесс без контроля, то уменьшение размера частиц приведёт к уменьшению глубины профиля и замедлению скорости очистки.

Для того чтобы этого не произошло, оператор должен проводить мониторинг качества обработки поверхности и периодически добавлять рассчитанное количество нового абразивного материала. Размер гранул полученной рабочей смеси будет средним между размерами нового и использованного абразива. Никогда не пытайтесь повторно использовать одноразовые абразивные материалы. Такие материалы разбиваются в пыль после первого цикла.

Для гарантии равномерной обработки поверхности необходимо следить за рабочей смесью. Это имеет ключевое значение при дробеструйной обработке в автомобиле- и авиастроении и при подготовке поверхности для сложных покрытий.

Форма

Разная форма абразивных материалов приводит к разному профилю поверхности. Частицы остроугольных абразивов имеют неправильную форму, с гранями и острыми краями, что позволяет удалять покрытия и оставлять чёткие пики и углубления. При работе с округлыми частицами образуются ямки. Некоторые округлые материалы продолговаты по своей форме и оставляют удлинённые вмятины.

Виды остроугольных абразивных материалов сильно отличаются друг от друга: некоторые имеют более угловатую форму, чем другие. Например, песок бывает круглый, продолговатый и угловатый. Морской и речной песок – более округлый или продолговатый, ввиду эрозионного воздействия воды. Песок из карьеров – угловатый и обладает режущим действием.

Остроугольные абразивы лучше подходят для удаления толстых слоёв краски и коррозии. Округлые материалы более эффективны для удаления прокатной окалины и лёгких загрязнений. Они используются для дробеструйного упрочнения с целью снятия напряжения поверхности. При упрочнении образуется одинаково спрессованная поверхность, что усиливает пружины и другие металлы, подверженные напряжению.

Плотность

Плотность – это отношение массы к объёму. Например, песок весит около 1,5 кг/л, колотая дробь – около 3,8 кг/л, скорлупа грецких орехов – всего 0,7 кг/л.

Плотность абразивного материала менее важна, чем другие его характеристики, кроме случаев, когда плотность материалов, сходных по другим параметрам, сильно отличается. Чем более плотный материал, тем больше энергии каждая частица передаёт поверхности. Разница плотности песка и шлака существенна и составляет 2,0 кг/л, разница между шлаком и колотой дробью достаточно значима – 2,4 кг/л. При прочих равных условиях более плотные частицы делают более глубокий профиль, что не всегда может быть желательно. Более плотные частицы эффективнее удаляют стойкие или твёрдые покрытия.

Твёрдость

Воздействие абразивного материала на обрабатываемую поверхность определяется его твёрдостью. Если абразив твёрже субстрата, то он оставит профиль на поверхности. Если он мягче поверхности, но твёрже покрытия, то он удаляет покрытие. Если он мягче покрытия, то он очищает грязь с поверхности без удаления покрытия.

Твёрдость абразивного материала измеряется по шкале Мооса (за исключением стальных абразивов). По данной шкале степень твёрдости определяется значениями от 1 до 10. При этом 1 означает, что материал мягкий как тальк, а 10 – твёрдый, как алмаз. Наиболее распространенные абразивные материалы варьируются по твёрдости – от мягких натуральных материалов до сверхтвёрдого карбида кремния.

Стальная крошка и дробь измеряются в Роквеллах по шкале С (и обозначаются Rc). Как правило, стальные абразивы и дробь варьируются от мягких, со
Страница 6 из 10

значением 35 Rc, до твёрдых – 65 Rc.

Твёрдые абразивы эффективнее в сложных случаях – при удалении ржавчины и прокатной окалины, а мягкие абразивы больше подходят для очистки или снятия покрытий.

Ломкость

Под ломкостью понимается хрупкость абразивных материалов, или их способность крошиться на мелкие части при ударе о поверхность. Чем больше ломкость абразива, тем меньшее количество раз он может быть использован повторно и тем больше он производит пыли.

Ввиду присутствия кварца в составе песка, он обладает большой ломкостью и никогда не допускает повторного использования. При первом использовании более 70 % песка превращается в пыль. Песок, который содержит кварц в свободном виде, образует опасные для здоровья кварцевые частицы. Люди, не защищённые от кварцевой пыли, могут быть подвержены очень болезненному, зачастую приводящему к летальному исходу заболеванию – силикозу.

Большая часть изготавливаемых или являющихся побочным продуктом абразивов может быть повторно использована ограниченное число раз. Это же касается и некоторых природных абразивов, таких как гранатовая крошка и кремень. Шлак от никелевого и медного производств разбивается на годные к повторному использованию более мелкие частицы. Стальная крошка очень устойчива и может пройти 200 и более циклов.

Возможность рекуперации зависит от многих переменных, включая давление воздуха, твёрдость поверхности и эффективность оборудования. Степень ломкости, указанная в «Таблице сравнения абразивных материалов» в Приложении 2, приведена только для целей сравнения. Более точную информацию о возможности повторного использования необходимо запросить у поставщика абразивных материалов.

Наиболее распространённые струйные абразивы

Песок широко используется благодаря своей доступности, эффективности и низкой стоимости. Основным недостатком песка является его пылеобразование.

Всего лишь после первого цикла большая часть песка превращается в пыль. При струйной обработке кварцевым песком образуется мелкая кристаллическая кварцевая пыль, которая присутствует в воздухе на протяжении долгого времени и, как было доказано, представляет серьёзную угрозу для здоровья при её вдыхании.

Запрещается проводить обработку песком или любым другим абразивом, который содержит более 1 % кварца в свободном виде.

Администрация по безопасности и гигиене труда (OSHA) требует выполнения федеральных правил, в соответствии с которыми ограничивается воздействие кварца в кристаллической форме на работников (OSHA 2206, General Industry Standards Part 1910, Subpart Z, Paragraph 1910.1000).

Администрация OSHA требует, чтобы все операторы струйных аппаратов и другие лица вблизи места проведения работ были одеты в исправные, одобренные NIOSH респираторы с подачей воздуха во время и после проведения работ по струйной очистке, пока окружающий воздух не будет протестирован и очищен от взвешенных частиц.

В различных частях России имеются залежи минерального песка (ставролит, оливин и т. д.), циркония и подобных материалов. Они, как правило, изготавливаются с более мелкой фракцией. Благодаря высокой плотности, около 2 кг/л, и прочности, они идеально подходят для очистки новой и слегка ржавой поверхности (соответствует степени загрязнения B по стандарту ISO 8501-3). Большая часть видов минерального песка содержит кварц в свободном виде, то есть кварц, который высвобождается из частиц песка во время струйной обработки. Если содержание кварца в свободном виде превышает 1 %, абразив не следует использовать для струйной очистки.

Гранатовая крошка и кремень являются очень твёрдыми и острыми материалами, которые хорошо подходят для удаления твёрдых поверхностных материалов и оставляют глубокий профиль. Оба материала могут быть возвращены в систему, просеяны и использованы заново. Гранат содержит лишь незначительное количество кварца в свободном виде, однако кремень обладает очень высоким содержанием кварца в свободном виде – 90 % и более, поэтому никогда не должен использоваться для струйной обработки. У граната насыпная плотность составляет 2,1 кг/л.

Абразивные материалы на основе побочных продуктов, такие как шлак и некоторые натуральные материалы, получаются в результате процесса, не имеющего отношения к обработке поверхности, но доказали свою высокую эффективность при применении в качестве материала для струйной очистки.

Шлаки получают из двух основных источников – при плавке металла (шлак никеля и меди) и работе котельных на электростанциях (шлак угля). Шлаки стали больше использоваться ввиду своих исключительных чистящих характеристик, доступности, низкому содержанию кварца (менее 1 %), широкому диапазону фракций и относительно низкой стоимости.

Твёрдые угловатые частицы шлаков развивают большую скорость и обладают повышенной разрезающей способностью, благодаря чему их можно применять для широкого спектра задач. В некоторых случаях даже требуется уменьшение давления в сопле, чтобы предотвратить застревание частиц в стали.

Абразивы из шлаков характеризует относительно высокая ломкость, что приводит к образованию пыли и ограничивает возможность их повторного использования. Перед проведением работ шлак нужно проверять на присутствие загрязнителей.

Купрошлак – это продукт, получаемый из гранулированных шлаков медеплавильного производства. В различных отраслях промышленности купрошлак знают под различными наименованиями. Это – минеральная дробь, шлифзерно, купершлак. Купрошлак – наиболее распространенный вид абразива на сегодняшний момент. Существует аналогичный абразив, изготавливаемый из гранулированных шлаков никелевого производства – никельшлак, его отличает более высокая твердость, а в остальном он схож с купрошлаком.

Основное преимущество купрошлака в сравнении с другими абразивными материалами – отношение цены к качеству очищаемой поверхности. Гранулы купрошлака имеют высокую твердость (6,5 по шкале Мооса) и острую угловатую форму, что позволяет достичь степени очистки Sa 3 (чистый металл без включений ржавчины и старых покрытий). Купрошлак хорошо профилирует поверхность (насечка 20—140 мкм), что благоприятно сказывается на адгезии. Купрошлак предназначен для удаления старых покрытий, окалины и ржавчины с металлических, кирпичных, бетонных, каменных поверхностей перед нанесением защитного покрытия, для удаления старых покрытий, разрушенных и размороженных участков при ремонте, а также перед окраской.

Работа с купрошлаком не наносит вреда ни здоровью людей, ни состоянию окружающей среды. Данный абразив не запрещен к использованию экологическими и санитарными органами даже на территории населенных пунктов. Абразив не содержит кварц в чистой форме, что предохраняет от силикоза, профессионального заболевания абразивоструйщиков.

Фракционный состав гранул купрошлака колеблется в пределах 0,1–3,5 мм.

Купрошлак имеет высокую удельную массу. Так как удельная плотность частиц купрошлака выше по сравнению с большинством абразивных материалов, то и кинетическая энергия удара частиц о поверхность больше. Рекуперация абразива может достигать пяти раз, но при этом размер частиц будет уменьшаться, а количество примесей
Страница 7 из 10

будет увеличиваться, что приводит к снижению качества чистки. Более мелкая фракция купрошлака подойдет для очистки мягких металлов, таких, как алюминий. Купрошлак наиболее востребован при агрессивных видах очистки, для профилирования и удаления глубокой коррозии, для повседневной очистки.

Обработка поверхностей купрошлаком может осуществляться как привычным абразивоструйным методом, так и гидроабразивным (подача воды в абразивную струю через специальное сопло), или пламенно-абразивным методом.

Существует несколько видов натуральных абразивных материалов. Скорлупа грецкого ореха и сердцевина кукурузного початка – одни из самых популярных материалов. Натуральные абразивы лёгкие (0,6 кг/л) и мягкие (значение 3 по шкале Мооса). При использовании со специальным оборудованием и при внимательном отношении к методике, с помощью натуральных материалов, можно удалять краску с дерева, пластика, тонкостенных металлов и других твёрдых поверхностей. Эти материалы используются для очистки электромоторов без повреждения статора и изоляции проводов.

Среди изготавливаемых абразивов можно отметить стальную крошку и дробь, оксид алюминия, карбид кремния, пластик, стеклянные шарики и другие.

Существует три основных вида металлических абразивов: из стали, ковкого железа и отбелённого чугуна. Из каждого из них делают дробь и крошку. Стальной абразив используется намного чаще, чем другие, потому что он выдерживает 200 и более циклов. Абразив из отбелённого чугуна рекуперируется от 50 до 100 раз, а ковкое железо немного больше.

Твёрдость металлического абразива измеряется по шкале «С» Роквелла (Rc), и чем больше значение, тем твёрже. Твёрдость стали варьируется от 35 Rc до 65 Rc; ковкого железа – от 28 Rc до 40 Rc; отбелённого чугуна – от 57 до 68 Rc.

Отбелённый чугун и ковкое железо стоят меньше, чем сталь, и используются, когда много абразивного материала утрачивается в процессе загрузки и разгрузки изделий. Кроме того, железо является более ломким и разбивается на угловатые частицы, благодаря чему его воздействие становится более интенсивным, чем стали.

Стальные частицы деформируются при ударе и пригодны до тех пор, пока частицы не станут слишком маленькими для использования. Чтобы обеспечить необходимый профиль, требуется периодически добавлять новый абразив.

Фракции металлического абразива стандартизированы в соответствии с техническим условиями «Общества инженеров-автомобилистов» (SAE). Фракции крошки обозначаются от G-10 (2,0/1,7 мм) до G-120 (0,125/0,075 мм), при этом фракция G-10 наиболее крупная. Фракции дроби варьируются от S-70 (0,125/0,180 мм) до S-780 (1,7/2,0 мм), при этом S-780 наиболее крупная фракция.

Карбид кремния является самым твёрдым, острым и наиболее дорогим абразивным материалом на рынке. Его значение твёрдости по шкале Мооса составляет 8,5. Он используется при удалении нагара с закалённых изделий после термообработки, когда требуется глубокое режущее действие.

Оксид алюминия уступает по остроте только карбиду кремния. Он часто применяется для работы с очень сложными покрытиями. Поскольку это дорогостоящий материал, его используют в закрытых струйных камерах, обеспечивающих возможность рециркуляции. Ввиду высокой плотности (1,8 кг/литр) и твёрдости (8 единиц по шкале Мооса) оксид алюминия является наиболее агрессивным из всех распространённых абразивных материалов.

В аэрокосмической и авиастроительной отраслях для очистки и снятия заусенцев с титана, магнезия и других сложных металлов используется оксид алюминия без каких-либо примесей, чтобы предотвратить загрязнение железосодержащими материалами. Стандартный абразив на основе оксида алюминия используется для обработки алюминия, латуни, чугунных и стальных отливок с целью быстрого удаления заусенцев и одновременно очистки поверхности. Чтобы обеспечить глубокую очистку и получить матовую отделку поверхности, с оксидом алюминия смешивают другие абразивы.

Гранулы оксида алюминия бывает мелкие и очень крупные. Его можно использовать повторно несколько раз, в зависимости от того, на каком струйном оборудовании проводятся работы – основанном на давлении, или работающем по принципу всасывания. Износ компонентов оборудования, которые соприкасаются с разогнанным до высокой скорости оксидом алюминия, происходит быстрее. Для продления срока службы оборудования при работе с оксидом алюминия необходимо использовать сопла из карбида бора и обшить корпус аппарата резиновым экраном.

Стеклянные шарики позволяют удалять большую часть загрязнителей, не влияя при этом на допустимое отклонение размеров поверхности. Они используются для полировки и иногда для упрочнения поверхности, чтобы снять её напряжение.

Стеклянные шарики изготавливаются из натриевого стекла без примесей свинца и кварца. Их сферическая форма идеально подходит для работ по упрочнению. Твердость составляет 5,5 по шкале Мооса. Однако ввиду высокой ломкости необходимо использовать низкое давление в сопле, что продлит срок службы материала. При излишне высоком давлении произойдёт преждевременное разрушение стеклянных шариков, а увеличения производительности не будет. Давление воздуха для стеклянных шариков в струйных системах, работающих по принципу всасывания, обычно настраивается от 4 до 5,5 бар, а в системах под давлением – от 2,8 до 4,1 бар.

Фракции стеклянных шариков варьируются от номера сита 12/14 (1,68/1,41 мм) до 170/325 (0,088/0,044 мм) (MIL SPEC-G-9954A: размеры от 1 до 13). Равномерная отделка поверхности достигается за счёт обновления рабочей смеси.

В автомобилестроении, авиастроении и литейной промышленности использование стеклянных шариков позволяет сохранить размеры обрабатываемых частей. Благодаря высокой чистоте стеклянных шариков, предотвращается загрязнение нержавеющей стали, алюминия и других мягких металлов. Они особенно эффективны при удалении заусенцев, облоя, окалины от термообработки, стирания следов от инструмента и придания эстетического вида любым металлам. Упрочнение посредством стеклянных шариков снижает возможность возникновения трещин и снимает напряжение поверхности изделий, которые подвержены высокой эксплуатационной нагрузке.

Пластиковые материалы хорошо подходят для удаления краски и ржавчины без повреждения поверхности. Остроугольный и эластичный материал эффективен при удалении загрязнений с тонкостенных изделий и некоторых высокотехнологичных композитных материалов без их повреждения. Пластиковые материалы выступают в качестве альтернативы химической обработке, зачистке шлифовальной шкуркой и другой ручной обработке, что позволяет применять их там, где раньше не могли и подумать о струйной очистке абразивными материалами.

Пластиковые абразивные материалы изготавливаются из разных типов смол. Твёрдость материала зависит от типа смолы и составляет от 3 до 4 по шкале Мооса. Фракционный состав варьируется от номера сита 12/16 (1,7/1,18 мм) до 40/60 (0,425/0,250 мм).

Очистка струйным оборудованием тонкостенного металла от краски должна осуществляться при низком давлении, от 1,4 до 2,8 бар. В струйных системах, работающих по принципу всасывания, давление воздуха может быть выше. При низком давлении материал служит дольше, до 10–12 циклов.

Для работы с
Страница 8 из 10

пластиковым материалом требуется специальное оборудование. Ввиду низкой плотности пластика, 0,9 кг/л, и остроугольной формы он обладает очень крутым углом откоса. В струйных аппаратах и резервуарах наклон конуса должен быть не менее 60 градусов. Коническое дно аппарата требуется покрыть эпоксидной смолой, чтобы обеспечить скольжение материала и, что не менее важно, предотвратить появление коррозии в стальном резервуаре аппарата, поскольку ржавчина может загрязнить материал. Сжатый воздух должен быть максимально сухим, потому что влага снижает сыпучесть абразива.

Среди возможных случаев применения пластикового абразива – снятие краски с тонкостенных металлов, стекловолокна, некоторых композитных материалов и даже деревянных изделий. Пластик широко используется для очистки грузовиков, автобусов, автомобилей, самолётов и лодок, а также в электронной промышленности для обработки печатных плат. Пластик идеально подходит для очистки литейных форм.

Пенистый абразивный материал – это пористый материал из водосодержащих полиуретановых частиц с открытыми порами, который может включать абразивные частицы. С помощью мягкого пенистого материала можно удалять сажу с обоев и счищать масло или жирные пятна с двигателей или гидравлических систем.

Пористый материал, включающий абразивные частицы, расплющивается при ударе, и абразивная частица выходит наружу. При отскоке от поверхности пена захватывает часть удаляемого материала, что снижает запылённость. Такие более агрессивные пенистые материалы могут использоваться для удаления покрытий с бетона, стали.

Ввиду того, что пенистые материалы часто используются в слегка влажном состоянии, требуется специальное оборудование для выброса, возврата и обновления частиц. Также необходимо оборудование для выпаривания и концентрации жидких отходов.

Риски, связанные с абразивными материалами

Пыль всегда опасна для дыхания, даже когда струйный материал не является токсичным!

Пыль всегда опасна для дыхания. Даже когда струйный материал не является токсичным, пыль от удаляемых покрытий может быть токсичной. В зоне проведения работ невидимые частицы пыли присутствуют в воздухе и взлетают при порыве ветра и движении. Поэтому весь персонал в зоне проведения работ должен всегда носить одобренные NIOSH респираторы с подачей воздуха, несмотря на то, ведутся ли работы по струйной очистке, или нет.

Никогда не проводите струйную обработку материалом, который содержит более 1 % кварца в свободном виде!

Самым опасным из известных респираторных заболеваний, связанных с абразивоструйной очисткой, является силикоз. Болезнь развивается вследствие хронического вдыхания мелких кварцевых частиц, которые остаются в лёгких. Эти частицы нельзя убрать с помощью откашливания. Они накапливаются, и образуются шрамы, которые препятствуют получению лёгкими достаточного количества кислорода. Поражённому болезнью человеку становится трудно дышать, и он легко поддаётся инфекции или туберкулёзу. В тяжёлых случаях заболевание приводит к смерти.

При струйной обработке самым распространённым источником кварца в свободном виде является кристаллический кварцевый песок. Другие минералы и некоторые абразивы из побочных продуктов содержат кварц в свободном виде. Некоторые абразивы содержат такие токсичные материалы, как мышьяк, цианид и тяжёлые металлы. Вдыхание этих токсинов приведёт к смертельному заболеванию.

Для определения угрозы здоровью необходимо обратиться к подготавливаемой производителем «Спецификации по безопасности материалов». Категорически не рекомендуется использование любого абразива, содержащего кварц или другой токсичный материал.

3. Основные элементы абразивоструйной системы

Введение

Каждый элемент абразивоструйной системы играет важную роль в достижении успеха производственного процесса. Успех определяется максимальной продуктивностью при наивысшей степени безопасности.

Все элементы абразивоструйной системы представлены в Приложении 1: «Составляющие рабочего места абразивоструйщика».

Основные элементы:

– воздушный компрессор соответствующей мощности, который применяется для обеспечения достаточного объёма сжатого воздуха;

– влагоотделитель и осушитель воздуха, который используются для предотвращения простоев из-за негативного воздействия воды;

– воздухопровод большого диаметра, с фитингами, не препятствующими потоку воздуха;

– абразивоструйный аппарат, устройство, ёмкость, клапаны и трубки которого обеспечивают высокую производительность;

– дозирующий клапан, спроектированный для создания стабильного однородного потока абразива;

– устройства дистанционного управления, которые используются для обеспечения безопасного и эффективного процесса;

– абразивоструйный рукав и муфты – устройства большого диаметра, применяемые для уменьшения потерь на трение;

– сопло, размер которого зависит от мощности компрессора с учётом резерва на износ сопла;

– средства индивидуальной защиты;

– регулятор давления и манометр, применяемый для настройки и контроля;

– сито и кожух, необходимые для защиты оборудования от мусора;

– оператор – опытный, знающий, обученный человек.

Абразивоструйный процесс – это прямой результат успешного взаимодействия всех этих элементов. Сбой в работе одного из элементов ухудшает производительность целой системы.

Дополнительные элементы:

Это элементы, добавляющие функциональность для различных случаев эксплуатации. Дополнительные элементы включают:

– технологическую подготовку производства, для поддержки и перемещения операторов на возвышенности;

– ограждение: для ограничения распространения пыли и абразива;

– оборудование для влажной абразивоструйной очистки, для снижения уровня пыли на очищаемой поверхности;

– оборудование с замкнутой системой, позволяющее сохранять весь абразив в рамках системы;

– контрольно-измерительное оборудование, необходимое для определения степени очистки и профиля поверхности;

– учебный материал, для приобретения эксплуатационных навыков;

– обучение нормам, для внедрения правил техники безопасности;

– поддержка ассоциации, для получения информации о технологических достижениях.

Сжатый воздух: источник энергии

В стандартной системе абразивоструйной очистки сжатый воздух используется для того, чтобы создать давление в абразивоструйном аппарате, подать абразив в сопло, обеспечить кругооборот воздуха для дыхания и привести в действие клапаны и вспомогательные устройства.

Объём выполненных работ прямо пропорционален объему и давлению воздуха в сопле.

Объем и давление

Мощность компрессора определяется давлением и объемом. Давление выражается в фунтах/дюйм

. Объем воздуха выражается в кубических футах в минуту. В метрической системе объём выражается в м

/ч или м

/мин, а давление – в атмосферах (смотрите «Таблицу по минимальному потреблению воздуха» в Приложении 5).

В большинстве пневматических инструментов используются пневматические клапаны и диафрагмы, периодически потребляющие сжатый воздух.
Страница 9 из 10

Требования к компрессору при работе с абразивоструйным оборудованием намного серьёзнее, чем при использовании любых других пневматических инструментов. Только высокого давления воздуха недостаточно, так как абразивоструйная очистка требует постоянной подачи большого объема воздуха под высоким давлением.

Высокое давление – важный фактор, но это лишь половина уравнения энергии. Наряду с давлением должен быть и достаточный объем воздуха.

Компрессоры на 0,75 кВт, равно как и на 75 кВт, могут создать давление 7 бар, но только лишь производительный, мощный компрессор мощностью 75 кВт сможет произвести большой объем воздуха, необходимый для абразивоструйной очистки.

При давлении 7 бар компрессор на 0,75 кВт генерирует объём воздуха 0,11—0,12 м

/мин, а типичный компрессор мощностью в 75 кВт производит от 11,3 до 12,7 м

/мин при том же давлении. Такой большой объем воздуха позволит обеспечить необходимое для абразивоструйной очистки давление 7 бар.

При усилении давления увеличивается объем воздуха, выходящего из сопла. Если компрессор не вырабатывает необходимый для сопла объем воздуха, он никогда не достигнет необходимого давления.

Например, при давлении 7 бар через отверстие сопла диаметром 9,5 мм проходит 5,6 м

/мин воздуха. Для того чтобы сохранить давление 7 бар, компрессор должен производить как минимум 5,6 м

/мин воздуха. Компрессор, производящий 4,2 м

/мин воздуха, никогда не достигнет давления 7 бар, поскольку воздух из сопла будет выходить быстрее, чем производиться в компрессоре.

Незначительное понижение давления резко уменьшает производительность. В рассмотренном выше примере видно, что перегруженный компрессор может обеспечить давление только 4,9 бар, что снизит производительность работ на 45 %.

Большинство подрядчиков производят абразивоструйную очистку металлоконструкций при давлении 7 бар. Стандартные абразивоструйные аппараты и их компоненты разработаны для эксплуатации при давлении до 8,8 бар. Хотя абразивоструйные рукава и другие компоненты могут быть рассчитаны на более высокое давление, давление в системе не должно превышать предела давления абразивоструйного аппарата.

Многие подрядчики перешли на стальную крошку и другие многоразовые абразивы. Производители аппаратов отреагировали на это внедрением новых стандартных абразивоструйных аппаратов давлением 10,5 бар. Повышенное давление позволяет системе сохранять достаточное давление в сопле и перемещать плотную стальную крошку через абразивоструйный рукав.

Примечание: некоторые абразивоструйные аппараты созданы для работы при давлении в 12 бар/1200 кПа (175 psi); поэтому воздушные компрессоры и вспомогательное оборудование должны быть подобраны соответственно.

Для большинства применений абразивоструйной очистки давление в 6,3–7 бар (90–100 psi) в сочетании с твердым, острым абразивом стандартной фракции обеспечивает хорошую производительность и высокую степень очистки. При более высоком давлении и использовании прочной стальной крошки производительность (и значение мощности компрессора) становится ещё больше.

Для достижения необходимой степени очистки некоторые минеральные абразивы мелкой фракции требуют давление в 8,4–9,8 бар/840–980 кПа (120–140 psi). Для предельно острых абразивов, как, например, оксид алюминия, требуется давление в 4,9–5,6 бар/490–560 кПа (70–80 psi) в целях уменьшения степени проникновения в поверхность острых частиц абразива.

Потребность в давлении зависит от состояния поверхности, используемого абразива и необходимой степени обработки поверхности.

Типы компрессоров и выбор компрессора

Обычно для обеспечения высокого давления и большого объема воздуха требуется использование ротационного пластинчатого или ротационного винтового компрессора.

Внутри завода будет дешевле использовать и проводить техническое обслуживание электрических компрессоров. В полевых условиях, как правило, используются передвижные бензиновые и дизельные компрессоры.

Для абразивоструйной очистки не следует использовать устаревшие поршневые компрессоры. Поршневой компрессор включается только тогда, когда давление падает на 10–15 psi, а затем выключается, когда давление приходит в норму. Данные колебания давления влияют на скорость частиц и конечный результат. Кроме того, для поршневых компрессоров требуется большое количество масляной смазки, которая, попадая в воздуховод, загрязняет абразив и обрабатываемую поверхность.

В некоторых ротационных винтовых компрессорах для охлаждения винта впрыскивается масло. Если работа компрессора нарушена, некоторое количество масла попадает в воздуховод.

Компрессоры с масляной смазкой, подающие воздух в респираторы (шлемы с подачей воздуха, маски), должны быть оснащены затвором на случай высокой температуры, датчиком угарного газа, либо и тем, и другим. Смотрите раздел «Средства защиты оператора».

Безмасляные компрессоры имеют герметичные смазанные подшипники. Винты не охлаждаются маслом, поэтому они генерируют более горячий воздух.

Следует выбирать такой воздушный компрессор, который обеспечит высокое постоянное давление, подачу большого объема воздуха и будет устойчив к условиям проведения работ по очистке. Для абразивоструйной очистки лучшим вариантом являются безмасляные ротационные пластинчатые и винтовые компрессоры.

Следует выбирать компрессор, который сможет удовлетворить ваши текущие и прогнозируемые потребности для компенсации износа сопла. Компрессор – это основополагающий компонент системы абразивоструйной обработки. Не следует его эксплуатировать при максимальной нагрузке в течение долгого периода времени, поскольку это приводит к быстрому износу.

Для того чтобы определить необходимую мощность компрессора, нужно сложить потребность в воздухе для всего оборудования и прибавить 50 % для резерва. Если есть вероятность использования сопла большего диаметра или пневматических инструментов, выбирайте такой компрессор, который сможет удовлетворить и эти потребности. Производитель компрессоров может порекомендовать вам оборудование с наиболее подходящими параметрами эксплуатации.

Компрессоры должны быть оснащены эффективными воздухозаборными фильтрами для удаления пыли, которая является причиной сильного износа механизмов.

Кроме того, компрессоры должны иметь отключающие устройства для избежания перегрева. Перегрев может повредить детали механизма, но, что более важно, он может стать причиной образования бесцветного смертельно опасного вещества без запаха – угарного газа (СО). Там, где компрессоры подают чистый воздух (для дыхания) в шлемы, угарный газ может стать причиной смерти оператора.

Очень важным для подачи воздуха в систему абразивоструйной обработки является размер и тип воздуховыпускного отверстия в компрессоре.

Для регулирования воздушного потока многие выпускные клапаны компрессоров имеют внутренние щелевые пробки, равные по размеру примерно половине отверстия клапана. Клапан размером в 1 дюйм (25 мм) обычно имеет воздушный проход размером в

/

дюйма (12,5 мм) – очень маленький для подачи воздуха в абразивоструйный аппарат.

Быстросъёмные муфты на шланге
Страница 10 из 10

подачи воздуха также препятствуют потоку. Размер муфты относится к трубной резьбе, а не к внутреннему диаметру. Большинство муфт размером

/

дюйма (19 мм) имеют внутренний диаметр размером

/

дюйма (12,5 мм); а муфты размером в 1 дюйм (25 мм) обладают внутренним диаметром в

/

дюйма (19 мм).

Не следует применять ограничительные воздушные клапаны или быстросъёмные муфты, за исключением случаев работы с малыми струйными аппаратами с низкой производительностью.

Наименьший внутренний диаметр воздуховыпускного отверстия компрессора должен в четыре и более раз превышать размер отверстия сопла. Для сопла размером в 3/8 дюйма (9,5 мм) должны использоваться фитинги ресивера компрессора, воздушные клапаны и воздушные муфты с внутренним диаметром, как минимум, в 1,5 дюйма (38 мм). Таблица, показанная выше, иллюстрирует минимальные внутренние диаметры соединительных устройств подачи воздуха, используемых со стандартными соплами.

Помните, что наименьшее отверстие в системе подачи воздуха регулирует количество воздуха, подаваемого в абразивоструйный аппарат.

Влага, масло и другие загрязнители

Вода и масло – злостные враги абразивоструйного оборудования. Они являются причиной того, что в абразиве образуются комки, которые засоряют дозирующий клапан, рукава и сопла. Если влага попадет на обрабатываемую поверхность, она может вызвать ржавление металла. Если же масло попадет на поверхность, оно может быть причиной вспучивания покрытия и, в конце концов, его разрушения.

Воздух вокруг нас содержит влагу. Когда окружающий воздух нагревается при сжатии, а затем охлаждается при расширении в ресивере, появляется влага. Теплый воздух содержит больше влаги, чем холодный, и высвобождается от нее, когда воздух сжат и охлажден. Влага появляется даже при сжатии холодного сухого воздуха.

Очевидно, что вся влага, образующаяся в ресивере и воздушном шланге, попадает напрямую в абразивоструйный аппарат, где её впитывает абразив.

Вторая охлаждающая стадия протекает в воздушном шланге, соединяющем ресивер и абразивоструйный аппарат. Данное охлаждение вызывает конденсацию.

Все компрессоры образуют влагу, как побочный продукт сжатого воздуха. Некоторые компрессоры выделяют влагу и масло. В зависимости от относительной влажности воздуха окружающей среды существуют различные устройства для удаления масла и влаги. Поставщик вашего компрессора может помочь вам выбрать необходимое оборудование для сушки воздуха в зависимости от специфики применения и влажности воздуха в вашем регионе.

Влагоотделитель/фильтр, установленный в воздухоприёмнике абразивоструйного аппарата, удаляет воду и масло, которые конденсируются в воздухопроводе.

Коалесцирующие фильтры часто устанавливают в выходном отверстии компрессора, но также они могут находиться и во впускном отверстии абразивоструйного аппарата. Они улавливают некоторое количество водяных паров, образующих маленькие капельки.

Доохладители – это радиаторы, которые охлаждают воздух для конденсации влаги, затем поглощают её, пока она не попадёт в абразивоструйный аппарат. Их обычно устанавливают в выходное отверстие компрессора.

Осушители воздуха (как химические, так и охлаждающие) являются наиболее эффективным методом удаления влаги и масла. Они могут быть установлены где угодно между выходным отверстием компрессора и входным отверстием абразивоструйного аппарата. Идеальная схема включает в себя доохладитель в выходном отверстии компрессора и осушитель воздуха в линии, ведущей к абразивоструйному аппарату.

Сухой атмосферный воздух

Если окружающий воздух сухой и компрессор работает эффективно, влагоотделитель, установленный во входном отверстии абразивоструйного аппарата, сможет удалить всё, даже незначительное количество масла и воды из сжатого воздуха. Выбирайте влагоотделители, которые позволят создавать более чем достаточный поток воздуха. Маленькие аппараты могут ограничивать поток воздуха к абразивоструйному оборудованию.

Незначительная влажность

Если окружающий воздух незначительно влажен, установите коалесцирующие фильтры в воздухопроводе сразу же после влагоотделителя.

Умеренная влажность

Установите доохладитель рядом с выходным отверстием компрессора и влагоотделитель рядом с абразивоструйным аппаратом.

Высокая влажность

Установите охлаждающие или химические осушители воздуха. Охлаждающий осушитель охладит сжатый воздух, затем направит его через коалесцирующие, адсорбирующие и высушивающие фильтры, которые улавливают влагу, масло, пыль и другие загрязняющие вещества. Влагоотделитель, установленный во входном отверстии абразивоструйного аппарата, удаляет всю оставшуюся воду и масло.

Для применений, где контроль уровня влажности очень важен, необходимо устанавливать охлаждающие или химические осушители воздуха вне зависимости от уровня влажности окружающего воздуха. Сюда относится использование пластикового абразивного материала или натурального абразива, а также очистка поверхностей, где запрещаются любого рода загрязнения.

Выбор необходимой системы фильтрации зависит от климатических условий территории, где производится очистка. Даже в пустыне присутствуют влага, масло и другие загрязняющие вещества. Следует установить эффективные средства фильтрации сжатого воздуха для гарантии подачи в абразивный аппарат только чистого, сухого воздуха.

Ресиверы и коллекторы

Компрессоры имеют воздухоприемные ресиверы, соответствующие производительности компрессора и применяемые для аккумуляции и охлаждения сжатого воздуха. Большинство ресиверов имеют промышленные фитинги и воздушные клапаны. Проверьте внутренний диаметр всех фитингов, воздушных клапанов и муфт для того, чтобы убедиться, что все они соответствуют объему воздуха, необходимого для подачи в сопло.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/d-u-kozlov/blasting-gid-po-vysokoeffektivnoy-abrazivostruynoy-ochistke/?lfrom=931425718) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Здесь представлен ознакомительный фрагмент книги.

Для бесплатного чтения открыта только часть текста (ограничение правообладателя). Если книга вам понравилась, полный текст можно получить на сайте нашего партнера.

Adblock
detector