Режим чтения
Скачать книгу

Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение читать онлайн - Митио Каку

Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Митио Каку

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Митио Каку

Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Переводчик Ульяна Сапцина

Научный редактор Константин Томс

Редактор Роза Пискотина

Руководитель проекта И. Серёгина

Корректоры Е. Аксенова, М. Савина, М. Миловидова

Компьютерная верстка А. Фоминов

Дизайнер обложки О. Сидоренко

Художник-илюстратор Роберт О'Киф

В дизайне обложки использована иллюстрация Shutterstock.com

© Michio Kaku, 1994

© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2016

Все права защищены. Произведение предназначено исключительно для частного использования. Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав. За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).

* * *

Посвящается моим родителям

Завораживающе… Читатель ошеломлен, вдохновлен и смотрит на мир в буквальном смысле новым, революционным взглядом.

    The Washington Post

Предисловие

Научная революция почти по определению противоречит здравому смыслу.

Если бы наши продиктованные здравым смыслом представления о Вселенной были верны, наука разгадала бы ее секреты еще тысячи лет назад. Цель науки – очистить предмет от внешних проявлений, обнажая скрывающуюся под ними сущность. Собственно, если бы видимость и сущность совпадали, потребности в науке не возникло бы.

Вероятно, наиболее укоренившееся представление о нашем мире, проистекающее из здравого смысла, – то, что наш мир трехмерный. Без лишних объяснений понятно, что длины, ширины и высоты достаточно для описания всех объектов в видимой нам Вселенной. Эксперименты с младенцами и животными подтвердили, что ощущение трехмерности нашего мира присуще нам с самого рождения. А когда мы прибавляем к трем измерениям еще одно – время, то четырех измерений хватает для описания всего происходящего во Вселенной. Где бы ни применялись наши инструменты – и в глубине атома, и на самых дальних границах скопления галактик, – мы нашли только свидетельства этих четырех измерений. Во всеуслышание утверждать иное, заявлять о возможном существовании других измерений или сосуществовании нашей Вселенной рядом с другими – значит навлекать на себя насмешки. Тем не менее этому глубоко укоренившемуся предрассудку в отношении нашего мира, впервые взятому на вооружение древнегреческими философами два тысячелетия назад, предстоит пасть жертвой научного прогресса.

Эта книга посвящена революции в науке, которую произвела теория гиперпространства[1 - Это настолько новый предмет (На момент первого издания книги – 1994 г. – Прим. пер.), что для него еще не существует общепринятого термина, которым пользовались бы физики-теоретики, ссылаясь на теории высших измерений. Строго говоря, когда физики ведут речь об этой теории, они ссылаются на конкретную теорию – Калуцы – Клейна, супергравитации, суперструн, хотя термин «гиперпространство» обычно применяется, когда имеются в виду высшие измерения, а «гипер» – корректная научная приставка для геометрических объектов, относящихся к миру высших измерений. В соответствии с распространенной практикой я пользуюсь термином «гиперпространство», говоря о высших измерениях.], утверждающая, что существуют и другие измерения помимо четырех общеизвестных измерений пространства и времени. Физики всего мира, в том числе несколько нобелевских лауреатов, все охотнее признают, что в действительности Вселенная может существовать в пространстве с более высоким количеством измерений. Если эта теория верна, она совершит концептуальный и философский переворот в наших представлениях о Вселенной. В научных кругах теория гиперпространства известна под названием теорий Калуцы – Клейна и супергравитации. В усовершенствованном виде она представлена теорией суперструн, которая даже предполагает точное число измерений – десять. Три обычных пространственных (длина, ширина, высота) и одно временное дополнены еще шестью пространственными.

Предупреждаем: теория гиперпространства еще не подтверждена экспериментально, и, в сущности, весьма затруднительно подтвердить ее в лабораторных условиях. Однако она уже распространилась, покорила крупные исследовательские лаборатории мира и бесповоротно изменила научный ландшафт современной физики, породив ошеломляющее множество научно-исследовательских работ (по одним подсчетам – свыше 5000). Однако для неспециалистов почти ничего не написано, им не рассказали об удивительных свойствах многомерного пространства. Следовательно, широкие массы имеют лишь смутное представление об этой революции, если вообще имеют. Более того, бойкие упоминания об иных измерениях и параллельных вселенных в популярной культуре зачастую вводят в заблуждение. И это прискорбно, так как значение этой теории заключается в том, что она способна объединять все известные физические феномены в поразительно простую конструкцию. Благодаря данной книге впервые становятся доступными авторитетные с научной точки зрения и вместе с тем понятные сведения об увлекательных современных исследованиях гиперпространства.

Стремясь объяснить, почему теория гиперпространства вызвала такой ажиотаж в мире теоретической физики, я подробно рассмотрел четыре фундаментальные темы, которые красной нитью проходят через всю книгу. Этим темам соответствуют четыре части.

В части I я излагаю ранний этап развития теории гиперпространства, подчеркивая, что законы природы становятся более простыми и красивыми, если их записывать для большего числа измерений.

Для того чтобы понять, каким образом многомерность может упростить физические задачи, рассмотрим следующий пример: для древних египтян все, что связано с погодой, было полнейшей загадкой. Что вызывает смену времен года? Почему становится
Страница 2 из 13

теплее, если ехать на юг? Почему ветры обычно дуют в одном направлении? Невозможно было объяснить погоду, пользуясь ограниченными знаниями древних египтян, которые считали Землю двумерной плоскостью. А теперь представим, что египтян в ракете запустили в космос, откуда Земля видна как объект, движущийся по орбите вокруг Солнца. И ответы на все перечисленные ранее вопросы станут очевидными.

Тому, кто находится в космосе, ясно, что земная ось отклонена от вертикали примерно на 23? (при этом вертикаль перпендикулярна плоскости орбиты вращения Земли вокруг Солнца). Ввиду этого наклона северное полушарие получает гораздо меньше солнечного света при прохождении по одной части орбиты и больше – при прохождении по другой части. Поэтому на Земле есть зима и лето. И поскольку экваториальным областям достается больше солнечного света, чем областям вблизи Северного или Южного полюса, теплее становится по мере того, как мы приближаемся к экватору. И аналогично: поскольку Земля вращается против часовой стрелки (с точки зрения того, кто находится на Северном полюсе), северный, полярный воздух отклоняется в сторону, двигаясь на юг, к экватору. Таким образом, перемещение горячих и холодных масс воздуха, приведенных в движение вращением Земли, помогает объяснить, почему ветры обычно дуют в одном направлении – в зависимости от того, где именно на Земле мы находимся.

Словом, довольно смутные законы погоды легко понять, если взглянуть на Землю из космоса. Следовательно, для решения проблемы требуется выйти в космос – в третье измерение. Факты, непостижимые в «плоском мире», вдруг становятся очевидными, если рассматривать Землю трехмерной.

Законы тяготения и света тоже могут выглядеть так, словно между ними нет ничего общего. Они согласуются с разными физическими допущениями и математически рассчитываются по-разному. Попытки «срастить» эти две силы неизменно оказываются провальными. Но если мы добавим еще одно измерение – пятое – к предыдущим четырем (пространству и времени), тогда формулы, определяющие свет и тяготение, сойдутся, как два фрагмента головоломки. По сути, свет можно объяснить как вибрации в пятом измерении. При этом мы убедимся, что законы света и тяготения упростятся в пяти измерениях.

Поэтому многие физики в настоящее время убеждены, что традиционная четырехмерная теория «слишком тесна» для адекватного описания сил, характеризующих нашу Вселенную. Придерживаясь четырехмерной теории, физики вынуждены неудобным и неестественным образом «спрессовывать» силы природы. Более того, эта гибридная теория некорректна. Но, если оперировать количеством измерений, превышающих четыре, нам хватит «места», чтобы найти красивое, самодостаточное объяснение фундаментальным силам.

В части II мы развиваем эту простую мысль, подчеркивая, что теория гиперпространства, возможно, в состоянии объединить все известные законы природы в единой теории. Таким образом, теория гиперпространства способна увенчать достижения двух тысячелетий научных исследований, объединив все известные физические силы. Возможно, она подарит нам святой Грааль физики – «теорию всего», столько десятилетий ускользавшую от Эйнштейна.

На протяжении последних пятидесяти лет ученых занимал вопрос о том, почему фундаментальные силы, скрепляющие космос, – тяготение, электромагнетизм, сильное и слабое ядерное взаимодействия – так разительно отличаются друг от друга. Попытки величайших умов XX в. представить общую картину всех известных взаимодействий провалились. А теория гиперпространства дает возможность дать логичное объяснение как четырем силам природы, так и, казалось бы, беспорядочному набору субатомных частиц. В теории гиперпространства материю также можно рассматривать как вибрации, распространяющиеся в пространстве и времени. Отсюда следует захватывающее предположение: все, что мы видим вокруг, – от деревьев и гор до самих звезд – не что иное, как вибрации в гиперпространстве. Если это верно, значит, у нас появляется возможность элегантно и просто описать Вселенную средствами геометрии.

В части III мы рассмотрим вероятность растяжения пространства при чрезвычайных обстоятельствах, вплоть до появления в нем разрывов и прорех. Иными словами, гиперпространство может служить для прохождения сквозь пространство и время. Подчеркнем: все это лишь предположения, однако физики со всей серьезностью относятся к анализу свойств «кротовых нор», или «червоточин», – туннелей, соединяющих удаленные части пространства и времени. Например, физики Калифорнийского технологического института на полном серьезе предположили, что можно создать машину времени, представляющую собой «червоточину», которая соединяет прошлое с будущим. Машины времени уже покинули мир абстрактных рассуждений и фантазии и заняли законное место в сфере научных исследований.

Космологи даже выдвинули удивительное предположение, согласно которому наша Вселенная – лишь одна из бесконечного множества параллельных вселенных. Их можно сравнить со скоплением мыльных пузырей, зависших в воздухе. В обычных условиях контакт между этими пузырями-вселенными невозможен, но, проанализировав формулы Эйнштейна, космологи доказали возможность существования целой сети «червоточин», или трубок, соединяющих эти параллельные вселенные. Для каждого пузыря можно дать свое конкретное определение пространства и времени, имеющее значение только на его поверхности; за пределами этих пузырей пространство и время не имеют смысла.

Несмотря на то что многие выводы из этой дискуссии остаются чисто теоретическими, путешествия в гиперпространстве, в конце концов, могут найти самое что ни на есть практическое применение: стать средством спасения разумной жизни, в том числе наших собственных жизней, от гибели Вселенной. Повсюду ученые убеждены, что любая Вселенная рано или поздно гибнет, а вместе с ней – и вся жизнь, которая эволюционировала на протяжении миллиардов лет. К примеру, согласно превалирующей теории Большого взрыва, взрыв в космосе, случившийся 15–20 млрд лет назад, стал началом расширения Вселенной, когда звезды и галактики отбрасываются и удаляются от нас на огромной скорости. Но если когда-нибудь Вселенная прекратит расширяться и начнет сокращаться, то в конце концов она схлопнется, произойдет катаклизм, получивший название Большого сжатия, и вся разумная жизнь превратится в пар под действием невероятно высоких температур. Тем не менее некоторые физики полагают, что теория гиперпространства может оказаться единственной надеждой на спасение разумной жизни. В последние секунды существования нашей Вселенной разумная жизнь может избежать коллапса, ускользнув в гиперпространство.

В части IV мы завершим разговор последним практическим вопросом: если теория верна, когда же мы сумеем поставить себе на службу силу гиперпространственной теории? Это не просто отвлеченный, сугубо теоретический вопрос: в прошлом обуздание всего одного из фундаментальных взаимодействий необратимо изменило весь ход истории человечества, подняло нас над невежеством и нищетой древнего, доиндустриального общества, довело до уровня современной цивилизации. В
Страница 3 из 13

некотором смысле даже протяженную историю человечества можно рассматривать в новом свете, сквозь призму постепенного овладения каждым из четырех взаимодействий. История цивилизации претерпевала глубокие изменения, по мере того как каждая из этих сил была открыта и нашла применение.

Например, когда Исаак Ньютон формулировал классические законы тяготения, он разработал теорию механики, благодаря чему у нас появилось знание законов, которым подчиняются машины и механизмы. В свою очередь, это значительно ускорило промышленную революцию, а она дала толчок политическим силам, в конце концов свергнувшим феодальные династии Европы. В середине 60-х гг. XIX в., когда Джеймс Клерк Максвелл сформулировал основные законы сил электромагнитного взаимодействия, он положил начало Веку электричества, который дал нам динамо-машину, радио, телевидение, радиолокатор, домашнюю электротехнику, телефон, микроволновые печи, бытовую электронику, компьютер, лазер и много других электрических и электронных чудес. Не зная, как использовать силу электромагнитного взаимодействия, цивилизация была бы обречена на застой, задержалась бы во времени, предшествующем изобретению электрической лампочки и электродвигателя. В середине 40-х гг. XX в., когда появилась возможность эксплуатировать силу ядерного взаимодействия, мир вывело из равновесия создание атомной и водородной бомб – самого разрушительного оружия на планете. Мы еще не приблизились к единому пониманию всех космических сил, которым подчиняется Вселенная, но можем предположить, что повелевать ею сможет любая цивилизация, освоившая теорию гиперпространства.

Поскольку теория гиперпространства – это определенный набор математических формул, можно точно рассчитать, сколько именно энергии понадобится, чтобы свернуть пространство и время в «крендель» или проделать «червоточины», соединяющие отдаленные уголки нашей Вселенной. Увы, результаты вызывают разочарование. Требуемое количество энергии значительно превышает то, которым способна овладеть наша планета. Точнее, энергии должно быть в квадрильон раз больше, чем может дать наш самый большой ускоритель частиц. Нам придется ждать несколько столетий или даже тысячелетий, пока у нашей цивилизации не появится техническая возможность манипулировать пространственно-временным континуумом, или же надеяться на контакт с развитой цивилизацией, которая уже научилась управлять свойствами гиперпространства. Поэтому книга заканчивается рассмотрением интригующей, но гипотетической научной проблемы: какого уровня развития техники и технологии нам необходимо достичь, чтобы повелевать гиперпространством.

Так как теория гиперпространства заводит нас далеко за пределы привычных, доступных здравому смыслу представлений о пространстве и времени, в книге представлено несколько чисто гипотетических сюжетов. Прибегнуть к этому педагогическому приему меня побудила история о том, как нобелевский лауреат Исидор Айзек Раби обратился к аудитории, состоящей из физиков. Он посетовал на скверное положение в сфере обучения естественным наукам в США и упрекнул сообщество физиков за пренебрежение своим долгом, нежелание популяризировать рискованные научные начинания для широкой публики и особенно для молодежи. Он заявил, что, в сущности, авторы научно-фантастических произведений пропагандируют романтику науки гораздо успешнее, чем все физики вместе взятые.

В предыдущей книге «За пределами научной мысли Эйнштейна: Космические поиски теории Вселенной» (Beyond Einstein: The Cosmic Quest for the Theory of the Universe), написанной в соавторстве с Дженнифер Трейнер, я рассматривал теорию суперструн, рассказывал о природе субатомных частиц, подробно рассуждал о наблюдаемой части Вселенной и о том, что все сложности, имеющие отношение к материи, можно было бы объяснить с помощью тонких вибрирующих струн. В этой книге я раскрываю другую тему, говорю о невидимой части Вселенной, т. е. о сфере геометрии и пространственно-временного континуума. Предмет данного труда – не природа субатомных частиц, а многомерный мир, в котором они, скорее всего, существуют. По ходу этого разговора читатели поймут: вместо того чтобы служить пустым и пассивным фоном для кварков, играющих свои неизменные роли, многомерное пространство, в сущности, становится главным героем пьесы.

Обсуждая захватывающую историю теории гиперпространства, мы выясним, что поиски первичной природы материи, начатые еще древними греками два тысячелетия назад, оказались долгими и запутанными. В будущем, когда историки науки напишут завершающую главу этой длинной саги, возможно, они отметят, что решающую роль сыграло крушение общепринятых теорий трех или четырех измерений и победа теории гиперпространства.

    М. К.

    Нью-Йорк, май 1993 г.

Благодарности

С этой книгой мне очень повезло: моим редактором стал Джеффри Роббинс. Именно он был вдохновителем трех моих предыдущих книг – учебников теоретической физики, предназначенных для научных кругов и содержащих вопросы единой теории поля, теории суперструн и квантовой теории поля. Но данная книга стала первым научно-популярным текстом, ориентированным на широкую читательскую аудиторию, которую я написал для него. Работу в тесном контакте с Джеффри я всегда ценил как редкую привилегию.

Я хочу также поблагодарить Дженнифер Трейнер, моего соавтора по двум предыдущим научно-популярным книгам. Кроме того, она приложила свои таланты к тому, чтобы сделать презентацию по возможности гладкой и последовательной.

Также я благодарен множеству людей, которые помогали править черновики книги и критиковали их, – Берту Соломону, Лесли Мередит, Юджину Моллаву и моему литературному агенту Стюарту Кричевски.

И наконец, мне хотелось бы поблагодарить за гостеприимство Институт перспективных исследований в Принстоне, где была написана немалая часть этой книги. Этот институт, где провел последние десятилетия своей жизни Эйнштейн, оказался самым подходящим местом для работы над книгой о революционных исследованиях, которые дополнили и уточнили многие новаторские труды великого ученого.

Принцип креативности присущ именно математике. Следовательно, в известном смысле я считаю истиной то, что чистая мысль способна постичь реальность, о чем мечтали древние.

    Альберт Эйнштейн

Часть I

Знакомство с пятым измерением

1. Миры за пределами пространства и времени

Я хочу знать, как Бог сотворил этот мир. Меня не интересует то или иное явление. Я хочу знать Его мысли, остальное – частности.

    Альберт Эйнштейн

Воспитание физика

Два случая из детства значительно обогатили мое понимание мира и направили меня по пути к профессии физика-теоретика.

Помню, родители иногда брали меня в знаменитый Японский чайный сад в Сан-Франциско. Одно из счастливейших воспоминаний моего детства – как я сижу на корточках у пруда, загипнотизированный видом ярких и пестрых карпов, медленно проплывающих под водяными лилиями.

В эти тихие минуты я давал волю своему воображению, задавал себе глупые вопросы, на какие способен лишь ребенок: например, каким видят окружающий мир карпы, живущие в этом пруду. Мне думалось: каким
Страница 4 из 13

странным должен быть их мир!

Карпы, вся жизнь которых проходит в неглубоком пруду, наверняка убеждены, что их «Вселенная» состоит из мутноватой воды и лилий. Проводя большую часть времени в поисках корма на дне пруда, они могут лишь смутно догадываться о том, что над поверхностью воды есть другой, чуждый им мир. И его сущность неподвластна их пониманию. Меня заинтриговала мысль о том, что, хотя я и сижу всего в нескольких дюймах от карпов, мы бесконечно далеки друг от друга. Наша жизнь протекает в двух обособленных вселенных, мы никогда не переходим из одного мира в другой, хотя и разделены тончайшей из преград – поверхностью воды.

Однажды мне представилось, что среди рыб в пруду есть и «карпы-ученые». Вот они-то, думал я, поднимут на смех любую рыбу, предположившую, что над лилиями, возможно, есть параллельный мир. Для «карпа-ученого» реально лишь то, что видит или осязает рыба. Пруд для них – все. А незримый мир за пределами пруда антинаучен.

Однажды меня застиг дождь. Я увидел, как по поверхности пруда ударили тысячи мелких капель. Вода забурлила, волны мотали лилии из стороны в сторону. Прячась под крышей от дождя и ветра, я гадал, как воспринимают происходящее карпы. С их точки зрения, водяные лилии движутся сами по себе, без постороннего вмешательства. Поскольку вода, в которой живут карпы, кажется им невидимой, совсем как нам – воздух и пространство вокруг нас, карпы наверняка озадачены способностью водяных лилий двигаться самостоятельно.

Ученые племени рыб, фантазировал я, скорее всего, маскируют свое невежество какой-нибудь хитроумной выдумкой, называя ее силой. Будучи не в состоянии понять, что могут пробегать волны по незримой поверхности, они приходят к выводу, что лилиям присуща способность двигаться, даже когда к ним не прикасаются, потому что между ними действует таинственная и невидимая сущность – некая сила. Возможно, они дают этой иллюзии внушительные, высокопарные названия (например, «дальнодействие» или «способность лилий двигаться без внешнего контакта»).

Однажды я попытался представить себе, что будет, если я суну руку в воду и вытащу одного из этих «карпов-ученых». Он, наверное, яростно забьется, а я рассмотрю его и брошу обратно в пруд. Интересно, как воспримут это остальные карпы. Это событие, скорее всего, покажется им чем-то из ряда вон выходящим. Они впервые заметят, что один из «ученых» вдруг покинул их вселенную. Просто бесследно исчез. Поиски пропавшего карпа в рыбьей Вселенной не дадут ровным счетом никакого результата. А через несколько секунд, когда я брошу карпа обратно в пруд, «ученый» внезапно возникнет неизвестно откуда. И остальные карпы сочтут, что узрели чудо.

Опомнившись и собравшись с мыслями, «ученый» поведает остальным поистине удивительную историю. «Нежданно-негаданно, – скажет он, – неведомая сила выхватила меня из этой Вселенной (пруда) и зашвырнула в таинственный потусторонний мир со слепящими огнями и предметами причудливой формы, каких я прежде никогда не видывал. Но удивительнее всего было существо, которое удерживало меня в плену: оно не имело ни малейшего сходства с рыбой. Я был потрясен, обнаружив, что у него вообще нет плавников, тем не менее оно и без них способно передвигаться. Меня осенило, что всем известные законы природы в этом потустороннем мире неприменимы. А потом меня так же внезапно бросили обратно в нашу вселенную». (Конечно, эта история о путешествии за край Вселенной прозвучит настолько невероятно, что большинство карпов отмахнется от нее, считая полной ерундой.)

Я часто думаю о том, что мы подобны этим довольным жизнью карпам, плавающим в пруду. Мы существуем в собственном «пруду», уверенные, что наша Вселенная состоит только из тех объектов, которые можно увидеть или потрогать. Как и мир карпов, наш мир содержит лишь то, что знакомо нам и зримо. В своей самоуверенности мы отказываемся признать, что по соседству с нашей Вселенной, но за пределами нашей досягаемости есть параллельные вселенные или измерения. Если наши ученые придумывают, к примеру, концепции силы, то лишь потому, что не могут представить себе незримые вибрации, наполняющие пустое пространство вокруг нас. При упоминании высших измерений некоторые ученые иронически усмехаются, так как эти измерения невозможно изучать в лаборатории.

С тех самых пор меня увлекла мысль о возможности существования других измерений. Подобно большинству детей, я зачитывался приключенческой литературой, в которой путешественники во времени проникали в другие измерения и открывали незримые параллельные миры, где действие обычных законов физики можно было приостановить ради удобства. Я размышлял, действительно ли корабли в Бермудском треугольнике таинственным образом исчезают в пространственной дыре; я восхищался циклом Айзека Азимова «Основание» (Foundation), в котором открытие путешествий в гиперпространстве привело к появлению галактической империи.

Второй случай из детства тоже произвел на меня глубокое и неизгладимое впечатление. В возрасте восьми лет я услышал одну историю, память о которой сохранил на всю жизнь. Мне запомнилось, как учителя рассказывали классу о только что умершем великом ученом. О нем отзывались со всей почтительностью, его называли величайшим гением в истории человечества. Говорили, что лишь немногие способны понять его идеи, но его открытия преобразили весь мир, все, что нас окружает. Из того, что нам пытались растолковать, я уловил немногое, но был особенно заинтригован тем, что этот человек умер, не успев завершить свое главное открытие. Над этой теорией он работал много лет, но умер, оставив на столе незаконченную рукопись.

Этот рассказ заворожил меня. Ребенком я видел в нем великую тайну. Какую работу он не успел закончить? Что было в рукописи у него на столе? Насколько важной и трудной должна быть проблема, чтобы такой выдающийся ученый посвятил ей целые годы своей жизни? Любопытство побуждало меня узнавать все, что только можно, об Альберте Эйнштейне и его незаконченной теории. До сих пор с нежностью вспоминаю о том, сколько тихих часов провел, читая все, что мог найти, о великом ученом и его теориях. Исчерпав запасы ближайшей библиотеки, я продолжал прочесывать библиотеки и книжные магазины всего города, старательно выискивая новые сведения. Вскоре выяснилось, что эта история гораздо увлекательнее любого детектива и намного значительнее, чем можно было представить. Я решил, что попытаюсь докопаться до истины, даже если ради этого мне придется стать физиком-теоретиком.

Вскоре выяснилось, что незаконченная рукопись на столе Эйнштейна была попыткой создать так называемую единую теорию поля – теорию, которая объяснила бы все законы природы применительно как к мельчайшей частице, так и к самой большой галактике. Но в детстве я не понимал, что, возможно, между карпом, плавающим в пруду чайного сада, и незаконченной рукописью на столе Эйнштейна есть связь. И не подозревал, что высшие измерения могут оказаться ключом к разгадке единой теории поля.

Позднее, в старших классах школы, я перечитал почти все, что нашел в ближайших библиотеках, и часто наведывался в библиотеку факультета физики Стэнфордского университета. Там я узнал, что
Страница 5 из 13

Эйнштейн допускал возможность существования антиматерии, или антивещества, – новой субстанции, которая ведет себя как обычная материя, но при контакте с ней аннигилируется с выбросом энергии. Кроме того, я узнал, что ученые сконструировали огромные машины, так называемые «ускорители частиц», благодаря которым можно получать микроскопические количества этой экзотической субстанции в лабораторных условиях.

Одно из преимуществ ранней молодости в том, что ей не страшна мирская ограниченность, которая обычно оказывается непреодолимой для большинства взрослых. Не оценив возможных препятствий, я поставил перед собой цель самостоятельно сконструировать ускоритель частиц. Я изучал научную литературу, пока не пришел к убеждению, что сумею собрать бетатрон, способный разгонять электроны до миллионов электронвольт. (Миллион электронвольт – энергия, которую приобретают электроны, ускорившиеся в поле, созданном разностью потенциалов в миллион вольт.)

Первым делом я приобрел немного натрия-22, который радиоактивен и естественным образом излучает позитроны (аналог электронов в антиматерии). Затем сконструировал так называемую «камеру Вильсона», в которой следы субатомных частиц становятся видимыми. Мне удалось сделать сотни прекрасных снимков следов, которые оставляет антиматерия. Потом я принялся промышлять вокруг крупных складов электроники и собирать необходимые детали и оборудование, в том числе сотни фунтов лома трансформаторной стали, и построил в гараже бетатрон на 2,3 млн эВ – достаточно мощный, чтобы произвести пучок позитронов. Для изготовления гигантских магнитов, необходимых для бетатрона, я убедил родителей помочь мне намотать 22 мили (около 35 км) медной проволоки на школьном футбольном стадионе. Рождественские каникулы мы провели на 50-ярдовой линии поля, наматывая и собирая массивные катушки, вызывающие искривление траекторий быстрых электронов.

Получившийся бетатрон весом 300 фунтов (около 136 кг) и мощностью 6 кВт полностью потреблял всю энергию в доме. Когда я включал его, все предохранители обычно вылетали, дом внезапно погружался во тьму. Наблюдая за тем, как в доме периодически воцаряется мрак, мама только качала головой. (Мне казалось, она теряется в догадках, за что ей достался ребенок, который, вместо того чтобы играть в бейсбол или баскетбол, сооружает в гараже какие-то громоздкие электрические машины.) К моей радости, машина успешно создала магнитное поле, в 20 тысяч раз превосходящее по мощности магнитное поле Земли и необходимое для ускорения пучка электронов.

Столкновение с пятым измерением

Наша семья была бедной, поэтому мои родители опасались, что я не сумею продолжить эксперименты и учебу. К счастью, награды, которых удостоились мои исследовательские проекты, привлекли внимание ученого-атомщика Эдварда Теллера. Его жена великодушно помогла мне получить стипендию для четырехлетнего обучения в Гарварде, благодаря чему я осуществил свою мечту.

Парадокс, но хотя в Гарварде я начал официально изучать теоретическую физику, именно там постепенно угасло мое увлечение многомерностью. Подобно другим физикам, я начал с подробной и всесторонней программы изучения высшей математики каждой из сил природы по отдельности, рассматривая их как совершенно обособленные друг от друга. До сих пор помню, как решал задачу по электродинамике для моего преподавателя, а потом спросил его, как могло бы выглядеть решение, если бы в высшем измерении пространство было искривлено. Преподаватель посмотрел на меня странно, словно сомневался, что я в своем уме. Вскоре я научился абстрагироваться от своих прежних детских представлений о пространстве высших измерений, как делали многие до меня. Мне объяснили, что гиперпространство – неподходящий предмет для серьезных исследований.

Этот непоследовательный подход к физике меня не устраивал, мыслями я часто возвращался к карпам, живущим в чайном саду. Несмотря на то что формулы для электричества и магнетизма, которыми мы пользовались и которые были выведены Максвеллом в XIX в., оказывались на удивление полезными, выглядели они весьма условными. Мне казалось, что физики (совсем как карпы) выдумали эти «силы», чтобы замаскировать наше невежество, отсутствие у нас представлений о том, как одни объекты могут вызывать перемещение других при отсутствии непосредственных контактов.

Во время учебы я узнал, что в XIX в. предметом наиболее бурных споров было распространение света в вакууме. (Свет звезд способен без труда преодолевать триллионы триллионов миль в вакууме космического пространства.) Эксперименты также подтвердили: вне всякого сомнения, свет – это волна. Но если свет – волна, значит, что-то должно «волноваться». Звуковым волнам нужен воздух, волнам в воде – вода, а поскольку в вакууме волнам образовываться негде, получается парадокс. Как свет может быть волной, если нечему волнообразно колебаться? В итоге физики придумали вещество под названием эфир, которое заполняет вакуум и действует как среда для распространения света. Однако эксперименты убедительно доказали, что «эфира» не существует[1 - Как ни странно, даже у современных физиков по-прежнему нет однозначного решения этой задачи, однако за несколько десятилетий мы просто свыклись с мыслью, что свет может перемещаться в вакууме, хотя в нем и нечему совершать волнообразные колебания. – Прим. авт.].

И наконец, во время учебы в аспирантуре Калифорнийского университета в Беркли я совершенно случайно узнал, что существует и другое, хоть и спорное объяснение, каким образом свет может перемещаться в вакууме. Эта альтернативная теория выглядела настолько бредовой, что знакомство с ней стало для меня потрясением. Подобный шок испытали многие американцы, впервые услышав, что президента Джона Кеннеди застрелили. При этом все они запомнили, в какой именно момент услышали шокирующее известие, что при этом делали, с кем говорили. Мы, физики, тоже испытываем серьезный шок, когда впервые сталкиваемся с теорией Калуцы – Клейна. Поскольку эту теорию долгое время считали спекуляцией и домыслом, в учебные программы она никогда не входила, молодым физикам представлялась возможность открыть ее для себя случайно в процессе чтения внеучебных материалов.

Эта альтернативная теория дала свету простейшее объяснение: на самом деле свет – вибрация пятого измерения, или, как его называли мистики, – четвертого. Если свет и способен распространяться в вакууме, то лишь благодаря вибрации самого вакуума, так как в действительности «вакуум» существует в четырех пространственных измерениях и одном временном. Добавляя пятое измерение, силу тяжести и свет можно объединить на удивление простым способом. Вспоминая о впечатлениях, полученных в детстве в чайном саду, я вдруг понял, что это и есть математическая теория, которую я искал.

Исходная теория Калуцы – Клейна в силу технических трудностей более полувека оставалась бесполезной. Однако в последние десять лет ситуация изменилась. Более совершенные варианты теории, такие как теория супергравитации и особенно теория суперструн, наконец устранили ее неувязки. Чуть ли не в одночасье теорию многомерности начали отстаивать и
Страница 6 из 13

продвигать в исследовательских лабораториях всей планеты. Многие ведущие физики мира признали, что могут существовать и другие измерения, помимо обычных четырех пространственных и одного временного. Эта идея была в центре внимания интенсивных научных исследований. Многие физики-теоретики в настоящее время придерживаются мнения, что исследования многомерности могут стать решающим шагом к созданию всеобъемлющей теории, объединяющей законы природы, – теории гиперпространства.

Если это предположение окажется справедливым, будущие историки науки, скорее всего, смогут утверждать, что одной из великих концептуальных революций XX в. стало понимание, что гиперпространство может оказаться ключом, открывающим самые сокровенные тайны природы и всего сущего.

Из искры этой основополагающей концепции родилось пламя множества научных исследований: несколько тысяч статей, написанных физиками-теоретиками из крупнейших лабораторий мира, были посвящены изучению свойств гиперпространства. Страницы двух ведущих научных журналов – Nuclear Physics и Physics Letters – заполнились статьями с анализом самой теории. Было проведено более 200 международных физических конференций с целью выявления значения многомерности.

К сожалению, мы все еще далеки от экспериментального подтверждения идеи, что наша Вселенная многомерна. (О том, что именно потребовалось бы для обоснования теории и, возможно, управления мощью гиперпространства, мы поговорим далее в этой книге.) Так или иначе, в настоящее время эта теория решительно утвердилась на позициях законной отрасли современной теоретической физики. К примеру, Институт перспективных исследований в Принстоне, где Эйнштейн провел последние десятилетия своей жизни (и где была написана данная книга), в настоящее время является одним из центров активных исследований многомерного пространства-времени.

Стивен Вайнберг, удостоенный Нобелевской премии по физике в 1979 г., подытожил эту концептуальную революцию, сравнительно недавно заметив, что теоретическая физика приобретает все большее сходство с научной фантастикой.

Почему мы не видим высшие измерения?

Поначалу все эти революционные идеи кажутся нам странными, поскольку трехмерность окружающего нас повседневного мира мы принимаем как данность. Как отмечал ныне покойный физик Хайнц Пейджелс, «одна из характеристик нашего физического мира настолько очевидна, что никогда не ставит в тупик большинство людей, – это факт трехмерности пространства»[2 - Хайнц Пейджелс «Идеальная симметрия: Поиски начала времен» (Heinz Pagels, Perfect Symmetry: The Search for the Beginning of Time, New York: Bantam, 1985), с. 324.]. Почти интуитивно мы понимаем, что любой предмет можно описать с помощью его длины, ширины и высоты. Указав три числа, можно определить положение любой точки в пространстве. Когда мы хотим увидеться с кем-нибудь за обедом в Нью-Йорке, то говорим: «Встречаемся на 24-м этаже здания на углу 42-й улицы и Первой авеню». Два числа указывают конкретное пересечение улиц, третье – высоту над землей.

Пилоты самолетов тоже определяют свое точное местонахождение с помощью трех чисел – высоты и двух координат на сетке или карте. В сущности, указания трех чисел достаточно, чтобы найти любую точку на планете – от кончика нашего носа до пределов обозримого мира. Это понимают даже дети: эксперименты с младенцами показали, что, приблизившись к краю обрыва и заглянув туда, они ползут обратно. Малыши инстинктивно понимают смысл не только понятий «лево», «право», «вперед» и «назад», но и «вверх» и «вниз». Следовательно, интуитивное представление о трех измерениях прочно запечатлено в нашем мозгу с раннего детства.

Эйнштейн развил эту концепцию и включил в нее время как четвертое измерение. К примеру, чтобы увидеться с кем-нибудь за обедом, мы должны также указать время: допустим, сказать, что встречаемся в половину первого на Манхэттене; иначе говоря, чтобы определить конкретное событие, нам требуется его четвертое измерение – время, в которое это событие происходит.

Современных ученых привлекает возможность выйти за рамки концепции четвертого измерения по Эйнштейну. Предмет нынешнего научного интереса – пятое измерение (пространственное, находящееся за пределами временного и трех общеизвестных пространственных) и далее. (Во избежание путаницы повсюду в этой книге я в соответствии с принятой практикой называю четвертое измерение пространственным измерением, помимо длины, высоты и ширины. Физики обычно считают это измерение пятым, но я намерен придерживаться исторической последовательности. Четвертым временным измерением мы будем называть время.)

Каким мы видим четвертое пространственное измерение?

Проблема в том, что никаким. Пространства высших измерений невозможно вообразить, напрасными оказываются любые попытки. Выдающийся немецкий физик Герман фон Гельмгольц сравнивал неспособность «увидеть» четвертое измерение с неспособностью слепого понять, что такое цвет. Как бы красноречиво мы ни объясняли слепому, что такое «красный», слова не в состоянии передать все богатство смысловых оттенков такого понятия, как цвет. Даже опытные математики и физики-теоретики, годами работающие с многомерностью, признаются, что не могут визуализировать высшие измерения. Вместо этого они углубляются в мир математических формул. Но если математики, физики и компьютеры без проблем решают уравнения для многомерного пространства, люди в массе своей не могут представить себе иные вселенные, помимо нашей собственной.

В лучшем случае мы можем пользоваться разнообразными математическими фокусами, изобретенными математиком и мистиком Чарльзом Хинтоном на рубеже XX в., чтобы представлять себе тени или проекции многомерных объектов. Другие математики, подобно Томасу Банчоффу, главе кафедры математики Университета Брауна, написали компьютерные программы, позволяющие манипулировать многомерными объектами, отбрасывающими тени на плоскую, двумерную поверхность компьютерных экранов. Греческий философ Платон сравнивал с людей с пещерными жителями, обреченными видеть только размытые серые тени того богатства жизни, которое находится за пределами наших пещер, – так и компьютеры Банчоффа позволяют лишь мельком взглянуть на тени многомерных объектов. (В действительности мы не в состоянии вообразить высшие измерения из-за трагического стечения обстоятельств в процессе эволюции. Наш мозг эволюционировал таким образом, чтобы справляться с множеством экстренных ситуаций в трех измерениях. Мгновенно, даже не задумываясь, мы распознаем прыжок льва или нападение слона и реагируем на них. По сути дела, те люди, которые лучше представляли себе, как движутся, поворачиваются, изгибаются объекты в трех измерениях, имели несомненное преимущество и выживали чаще, чем те, кто не мог себе этого представить. К сожалению, не существовало давления естественного отбора, которое побуждало бы людей учиться воспринимать движение в четырех пространственных измерениях. Умение видеть четвертое пространственное измерение определенно не помогло бы никому отразить нападение саблезубого тигра. Львы и тигры не бросаются на нас через четвертое измерение.)

В высших измерениях
Страница 7 из 13

законы природы проще

Поддразнивать слушателей идеей многомерности вселенных любит Питер Фройнд, профессор теоретической физики знаменитого Института Энрико Ферми при Чикагском университете. Фройнд был одним из первопроходцев, работавшим над теориями гиперпространства еще тогда, когда физики считали их бредовыми. Годами Фройнд и небольшая группа ученых занимались наукой высших измерений, находясь в изоляции, теперь же она наконец вошла в моду и узаконена в сфере научных исследований. К удовольствию Фройнда, его раннее увлечение оправдало себя.

Фройнд не вписывается в традиционные представления об ограниченном, неотесанном и неряшливом ученом. Это вежливый, воспитанный, интеллигентный человек с проказливой, лукавой улыбкой, завораживающий далеких от науки слушателей увлекательными рассказами о стремительном прогрессе в сфере научных открытий. Фройнд с одинаковой легкостью испещряет доску формулами и ведет непринужденную светскую беседу на вечеринке с коктейлями. Фройнд говорит с заметным и благородным румынским акцентом, он обладает редким талантом объяснять самые мудреные, замысловатые физические концепции живым, увлекательным языком.

Фройнд напоминает нам, что по сложившейся традиции физики скептически относились к высшим измерениям потому, что их нельзя измерить, вдобавок у них нет конкретного применения. Но в настоящее время в среде ученых растет понимание того, что любая трехмерная теория «слишком ограничена» для описания сил, управляющих нашей Вселенной.

Как подчеркивает Фройнд, лейтмотивом физики последнего десятилетия стало то, что законы природы формулируются проще и яснее, когда они выражены в высших измерениях, т. е. в тех измерениях, в которых они действуют. Для законов света и гравитации находится естественное выражение, если рассматривать их в многомерном пространственно-временном континууме. Главное в объединении законов природы – увеличивать количество измерений пространства и времени до тех пор, пока все силы не будут объединены в рамках одного теоретического подхода. В высших измерениях нам хватает «места» для объединения всех известных физических сил.

Объясняя, почему высшие измерения завладели воображением ученых, Фройнд прибегает к следующей аналогии: «Представьте себе гепарда – прекрасное животное с гладкими, обтекаемыми формами, одно из самых быстрых на Земле, свободно передвигающееся по африканским саваннам. В своей естественной среде обитания это великолепное животное, практически шедевр природы, превосходит в скорости и грациозности всех прочих». И продолжает:

А теперь представьте, что гепарда поймали и посадили в тесную клетку в зоопарке. Он утратил присущую ему грацию и красоту, его выставили напоказ, чтобы развлечь нас. Мы видим лишь сломленный дух гепарда в клетке, а не силу и элегантность, которыми он обладал прежде. Этого гепарда можно сравнить с законами физики, прекрасными в их естественной среде. А естественная среда обитания законов физики – многомерное пространство-время. Но оценить законы физики количественно мы можем лишь в том случае, если они нарушены, посажены напоказ в «клетку», т. е. в нашу трехмерную лабораторию. Этого гепарда мы видим уже лишенным грации и красоты[3 - Питер Фройнд, в интервью с автором, 1990 г.].

На протяжении десятилетий физики гадали, почему четыре силы природы выглядят настолько обособленными, почему у «гепарда в клетке» такой жалкий и сломленный вид. Основная причина, по которой эти четыре силы настолько разнородны, отмечает Фройнд, заключается в том, что мы наблюдали за «гепардом в клетке». Наши трехмерные лаборатории – стерильные клетки зоопарка для законов физики. Формулируя эти же законы в многомерном пространстве-времени, их естественной среде обитания, мы видим их истинное великолепие и силу, законы становятся простыми и могущественными. Революция, захлестнувшая физику в настоящее время, – это осознание того, что естественная среда обитания нашего «гепарда» – гиперпространство.

Для того чтобы показать, каким образом введение высшего измерения способствует упрощению, представим себе, как велись масштабные войны во времена Древнего Рима. Великие римские войны зачастую разворачивались на множестве небольших полей и неизменно сопровождались невероятной путаницей, на противников со всех сторон сыпались разные слухи и дезинформация. Когда бои велись на нескольких фронтах, римские военачальники нередко действовали вслепую. Рим чаще побеждал в этих битвах за счет грубой силы, а не элегантной стратегии. Вот почему одним из первых принципов военного дела стал захват возвышенностей, высот, т. е. переход вверх, в третье измерение, над двумерным полем боя. Для человека, занимающего точку обзора на высоком холме, откуда открывалась панорама поля боя, хаос войны выглядел гораздо менее катастрофично. Иначе говоря, наблюдаемая из третьего измерения (т. е. с вершины холма) неразбериха на полях сражений выстраивается в единую связную картину.

Еще одно применение того же принципа, согласно которому природа, выраженная в высших измерениях, упрощается, занимает центральное место в специальной теории относительности Эйнштейна. Он обнаружил, что время является четвертым измерением, и продемонстрировал, что пространство и время легко объединить в теории четырех измерений. Это, в свою очередь, неизбежно повлекло за собой объединение всех физических величин, определяемых пространством и временем, например материи и энергии. Затем Эйнштейн нашел точное математическое выражение этого единства материи и энергии: Е = mc? – вероятно, самую известную из всех научных формул[2 - Безусловно, теория высших измерений не относится к сугубо отвлеченным, так как простейшее следствие теории Эйнштейна – атомная бомба, изменившая судьбы человечества. В некотором смысле введение высших измерений стало одним из кардинальных научных открытий в нашей истории. – Прим. авт.].

Для того чтобы оценить колоссальное значение этого объединения, опишем четыре фундаментальные силы, подчеркивая их различия, а также то, каким образом высшие измерения могут дать нам объединяющую систему формул. За последние 2000 лет ученые обнаружили, что все явления в нашей Вселенной можно свести к четырем силам, или взаимодействиям, на первый взгляд не имеющим никакого сходства друг с другом.

Сила электромагнитного взаимодействия

Сила электромагнитного взаимодействия может приобретать разнообразные формы, к которым относятся электричество, магнетизм и собственно свет. Электромагнитная сила освещает наши города, наполняет воздух музыкой радиоприемников и стереосистем, развлекает нас телевидением, избавляет от домашней работы благодаря бытовым электроприборам, подогревает нашу еду в микроволновках, следит за нашими самолетами и космическими аппаратами с помощью радаров, приводит в действие системы электростанций, вырабатывающих энергию. Сравнительно недавно сила электромагнитного взаимодействия стала применяться в электронно-вычислительных устройствах – компьютерах, которые произвели революцию в офисах, домах, школах и в армии, а также в лазерах, благодаря которым открылись новые перспективы в
Страница 8 из 13

сферах коммуникации, в хирургии, в производстве лазерных дисков, новейшего вооружения Пентагона и даже в работе магазинных касс. Более половины валового национального продукта планеты, представляющего собой всю совокупность ее богатств, в том или ином отношении зависит от силы электромагнитного взаимодействия.

Сильное ядерное взаимодействие

Сильное ядерное взаимодействие дает энергию, которая служит топливом звездам: благодаря ей звезды сияют, образуются яркие живительные лучи Солнца. Если бы сильное ядерное взаимодействие внезапно исчезло, Солнце потемнело бы, прекратилась бы вся жизнь на Земле. Некоторые ученые считают, что динозавры вымерли 65 млн лет назад, когда осколки, образовавшиеся при столкновении Земли с кометой, отлетели в верхние слои атмосферы, погрузили мир во мрак и вызвали резкое снижение температуры на планете. Парадоксально, но то же самое сильное ядерное взаимодействие способно отнять дар жизни. Выпущенная на волю с помощью водородной бомбы, эта сила может когда-нибудь уничтожить все живое на планете.

Слабое ядерное взаимодействие

Сила слабого ядерного взаимодействия обуславливает некоторые виды радиоактивного распада. Поскольку радиоактивные вещества при распаде выделяют тепло, слабое ядерное взаимодействие вносит свой вклад в нагревание радиоактивных пород в глубинных слоях планеты. Благодаря в том числе и этому нагреванию действуют вулканы; во время редких, но мощных извержений расплавленные породы достигают поверхности земли. Силы слабого и электромагнитного взаимодействий применяются для лечения тяжелых заболеваний: радиоактивный йод уничтожает опухоли щитовидной железы и помогает бороться с некоторыми видами рака. Сила радиоактивного распада может быть и губительной: она стала причиной серьезного ущерба при авариях на Чернобыльской АЭС и АЭС «Три-Майл-Айленд». Кроме того, результатом действия этой силы становятся радиоактивные отходы – неизбежный побочный продукт производства ядерного оружия и работы атомных электростанций – продукт, способный причинять вред на протяжении миллионов лет.

Сила тяжести

Сила гравитационного взаимодействия не дает Земле и другим планетам сойти с орбит и cкрепляет галактику. Без силы земного тяготения вращение планеты отбрасывало бы нас в космос словно тряпичных кукол. Воздух, которым мы дышим, быстро улетучился бы в космос, а мы умерли бы от удушья, жизнь на Земле сделалась бы невозможной. Без гравитационной силы Солнца все планеты, в том числе и Земля, были бы выброшены из Солнечной системы в холодные космические дали, где солнечный свет слишком слаб, чтобы способствовать жизни. В сущности, без силы гравитационного взаимодействия взорвалось бы и само Солнце. Солнце – это результат точного уравновешивания силы гравитации, стремящейся сдавить эту звезду, и силы ядерного взаимодействия, стремящейся разорвать ее. Если бы не гравитация, Солнце взорвалось бы, как триллионы триллионов водородных бомб.

В настоящее время основной задачей, стоящей перед теоретической физикой, является объединение этих четырех сил в одну. Начиная с Эйнштейна, титаны физики XX в. пытались найти метод такого объединения и при каждой попытке терпели фиаско. Возможно, решение, которое ускользало от Эйнштейна последние 30 лет его жизни, находится в гиперпространстве.

В поисках объединения

Однажды Эйнштейн сказал: «Природа показывает нам только львиный хвост. Но я нисколько не сомневаюсь в том, что этот хвост принадлежит льву, хотя увидеть его целиком невозможно ввиду колоссальных размеров»[4 - Процитировано в: Абрахам Пайс. Научная деятельность и жизнь Альберта Эйнштейна» (Abraham Pais, Subtle Is the Lord: The Science and the Life of Albert Einstein, Oxford: Oxford University Press, 1982), с. 235.]. Если Эйнштейн прав, тогда, вероятно, четыре силы – это «львиный хвост», а многомерное пространство-время – сам «лев». Эта идея пробудила надежду, что физические законы Вселенной, описанные в книгах, заполненных таблицами и графиками, удастся когда-нибудь объяснить с помощью единственной формулы.

Центральная мысль этой революционной концепции Вселенной состоит в том, что в основе единства Вселенной, возможно, лежит многомерная геометрия. Говоря попросту, материя во Вселенной и силы, которые не дают ей разлететься и придают ошеломляющее, бесконечное разнообразие замысловатых форм, могут оказаться не чем иным, как различными вибрациями гиперпространства. Однако эта концепция идет вразрез с традиционными представлениями ученых, рассматривающих пространство и время всего лишь как сцену, на которой главные роли исполняют звезды и атомы. Зримая, материальная Вселенная кажется ученым бесконечно более богатой и разнообразной, нежели пустая неподвижная арена незримой Вселенной пространства-времени. Исторически сложилось, что почти все интенсивные исследования в физике частиц и солидные вливания государственных средств в конце концов приводили к систематизации свойств субатомных частиц, таких как «кварки» и «глюоны», а не к постижению природы геометрии. Но теперь до ученых постепенно доходит, что «никчемные» концепции пространства и времени могут оказаться первоисточником красоты и простоты в природе.

Первая теория многомерности получила название теории Калуцы – Клейна в честь двух ученых, предложивших новую теорию гравитации, согласно которой свет можно объяснить вибрациями в пятом измерении. Примененные к N-мерному пространству (где N – любое целое число), кажущиеся нескладными теории субатомных частиц вдруг приобретают поразительную гармоничность. Однако старая теория Калуцы – Клейна не определяет точную величину N, вдобавок при описании всех субатомных частиц возникают технические сложности. У более совершенного варианта этой теории, названной теорией супергравитации, тоже есть недостатки. Интерес к этой теории вспыхнул в 1984 г. с подачи физиков Майкла Грина и Джона Шварца, доказавших последовательность наиболее совершенного варианта теории Калуцы – Клейна, названного теорией суперструн и утверждающего, что вся материя состоит из мельчайших колеблющихся струн. Удивительно, но теория суперструн предсказывает точное количество пространственно-временных измерений – десять[3 - Фройнд усмехается при вопросе о том, когда мы наконец увидим эти дополнительные измерения. Мы не можем видеть высшие измерения потому, что они «скручены» в настолько крошечный шарик, что в таком виде их уже не различить. Согласно теории Калуцы – Клейна размер этих скрученных измерений называется планковской длиной*, она в 100 миллиардов миллиардов (квинтиллион) раз меньше размера протона, т. е. слишком мала для изучения с помощью даже самых больших ускорителей частиц, какими мы располагаем. Специалисты в области физики высоких энергий надеялись, что Сверхпроводящий суперколлайдер стоимостью $11 млрд (ССК, строительство которого было отменено конгрессом в октябре 1993 г.) косвенным образом поможет им увидеть слабые проблески гиперпространства. – Прим. авт.* Это невероятно малое расстояние еще не раз появится здесь, в книге. Оно представляет собой основной масштаб расстояний, характеризующий любую квантовую теорию гравитации. Причина этого явления довольно проста.
Страница 9 из 13

В любой теории гравитации сила гравитационного взаимодействия измеряется с помощью гравитационной постоянной (постоянной Ньютона). Но физики пользуются упрощенной системой единиц, в которой скорость света с принята равной единице. Это означает, что 1 секунда эквивалентна 186 000 миль (297 600 км). Кроме того, постоянная Планка, деленная на 2?, также принята равной единице; таким образом, задаются численные соотношения между секундами и эргами энергии. В этих странных, но удобных единицах все вплоть до постоянной Ньютона можно свести к сантиметрам. Если же вычислить длину, ассоциирующуюся с постоянной Ньютона, мы получим планковскую длину, или 10

 см, или 10

млрд эВ. Таким образом, все квантовые гравитационные эффекты определяются в сравнении с этим малым расстоянием. В частности, размер незримых высших измерений – планковская длина.].

Преимущество десятимерного пространства заключается в том, что нам «хватает места» для размещения всех четырех фундаментальных сил. Более того, мы получаем простую физическую картину для объяснения беспорядочной мешанины субатомных частиц, сведения о которых получены с помощью наших мощных ускорителей. За последние 30 лет сотни субатомных частиц были выявлены физиками среди осколков, полученных при столкновении протонов и электронов с атомами, тщательно классифицированы и изучены. Как и энтомологи, педантично дающие названия бесчисленным насекомым, физики порой сталкиваются с огромным разнообразием и сложностью этих субатомных частиц. В настоящее время согласно теории гиперпространства это невероятное собрание субатомных частиц может объясняться просто как вибрации.

Путешествие сквозь пространство и время

Теория гиперпространства также привела к пересмотру вопроса о том, можно ли с помощью гиперпространства совершать путешествия сквозь пространство и время. Для понимания этой концепции представим себе популяцию мелких плоских червячков, живущих на поверхности большого яблока. Для этих червячков очевидно, что их мир, который они называют Яблокомиром, плоский и двумерный, как они сами. Но один червячок по имени Колумб одержим мыслью, что Яблокомир конечен и, загибаясь, переходит в другое измерение, которое Колумб называет «третьим». Он даже придумывает два новых слова – «верх» и «низ» – специально для описания движения в этом незримом третьем измерении. Но друзья потешаются над Колумбом за упрямую веру в то, что Яблокомир может переходить в некое неизвестное измерение, которое никто не может увидеть или пощупать. Однажды Колумб пускается в долгое и трудное путешествие и скрывается за горизонтом. В конце концов он возвращается в исходную точку, стремясь доказать, что его мир действительно описывает кривую линию в невидимом третьем измерении. Его путешествие подтверждает, что Яблокомир действительно описывает кривую и переходит в невидимое третье измерение. Несмотря на усталость после путешествия, Колумб обнаруживает, что есть и другой способ преодолеть расстояние между удаленными друг от друга точками на яблоке: вгрызаясь в яблоко, можно проделать в нем туннель и таким образом создать удобный путь напрямик в дальние края. Такие туннели, благодаря которым путешествия становятся гораздо более удобными и менее продолжительными, Колумб называет червоточинами. Они свидетельствуют о том, что кратчайший путь между двумя точками – не обязательно прямая линия, как его учили, а червоточина.

Колумб обнаруживает необычный эффект: когда он входит в такой туннель и выходит из него с другой стороны, то попадает в прошлое. По-видимому, червоточины соединяют части яблока, где время движется с разной скоростью. Некоторые червячки даже утверждают, что червоточины можно превратить в действующую машину времени.

Затем Колумб совершает еще более значительное открытие: оказывается, его Яблокомир – не единственный во Вселенной. Это лишь одно из яблок в огромном яблоневом саду. Колумб узнает, что его яблоко сосуществует с сотнями других, на одних живут такие же червячки, как он сам, другие необитаемы. Колумб предполагает, что при определенных обстоятельствах можно даже совершать путешествие на другое яблоко того же сада.

Мы, люди, уподобляемся этим червячкам. Здравый смысл твердит, что наш мир, как для них – яблоко, плоский и трехмерный. Куда бы мы ни отправились в ракете, Вселенная кажется плоской. Но на самом деле наша Вселенная, подобно Яблокомиру, описывает кривую, переходя в невидимое измерение, находящееся за пределами нашего восприятия пространства, экспериментально подтвержденного рядом скрупулезных экспериментов. Эти эксперименты, в ходе которых прослеживался путь световых лучей, показали, что свет звезд при движении по Вселенной изгибается.

Многосвязные вселенные

Проснувшись утром и открывая окно, чтобы впустить свежий воздух, мы рассчитываем увидеть двор своего дома. И никак не предполагаем обнаружить возвышающиеся перед нами египетские пирамиды. Подобно этому, когда мы открываем дверь, мы готовы увидеть автомобили на улице, а не кратеры и потухшие вулканы на безжизненном лунном ландшафте. Даже не задумываясь, мы подразумеваем, что можно открывать окна или двери и не опасаться, что увиденное перепугает нас до смерти. К счастью, наш мир – не фильм Стивена Спилберга. Мы действуем в соответствии с глубоко укорененным (и неизменно верным) предубеждением, что наш мир односвязный, что наши окна и двери – не входы в «червоточины», соединяющие наш дом с далекими вселенными. (В обычном пространстве веревочную петлю всегда можно затянуть в точку. Если это возможно, такое пространство называется односвязным. Но если петля помещена вокруг устья «червоточины», ее нельзя стянуть в точку. При этом веревка попадет в «червоточину». Такие пространства, где веревочные петли невозможно стянуть, называются многосвязными. Хотя изгиб нашей Вселенной в месте ее перехода в невидимое измерение экспериментально подтвержден, вопросы о существовании «червоточин» и многосвязности нашей Вселенной, по-прежнему остаются предметами научных споров.)

Математики со времен Георга Бернхарда Римана изучали свойства многосвязных пространств, в которых соединены различные области пространства и времени. Физики, некогда считавшие эти задачи всего лишь упражнением для ума, теперь со всей серьезностью относятся к исследованию многосвязных миров как практической модели нашей Вселенной. Эти модели представляют собой научный аналог зеркала Алисы. Когда Белый Кролик у Льюиса Кэрролла падает в нору, чтобы попасть в Страну чудес, на самом деле он падает в «червоточину».

«Червоточины» можно наглядно представить с помощью листа бумаги и ножниц. Возьмите бумагу, прорежьте в ней два отверстия, а затем соедините их длинной трубкой (рис. 1.1). Если обходить «червоточины» стороной, наш мир выглядит совершенно обычным. И подчиняется обычным законам геометрии, которые изучают в школе. Но, угодив в «червоточину», мгновенно попадаешь в другую область пространства-времени. Только вернувшись обратно и выбравшись из «червоточины», можно снова очутиться в привычном мире.

Путешествия во времени и дочерние вселенные

«Червоточины» – увлекательная
Страница 10 из 13

область исследований, но, вероятно, наиболее волнующая тема в дискуссии о гиперпространстве – это вопрос путешествий во времени. В фильме «Назад в будущее» (Back to the Future) Майкл Джей Фокс путешествует во времени и встречает своих родителей еще совсем молодыми, до того как они поженились. К несчастью, мать главного героя влюбляется в него самого и отвергает его отца, в итоге возникает щекотливый вопрос: как появился герой, если его родители так и не поженились и не обзавелись детьми?

Обычно ученые придерживаются невысокого мнения о тех, кто поднимает вопрос о путешествиях во времени. Каузальность, или причинно-следственная связь (представление, согласно которому каждому следствию предшествует причина, а не наоборот), прочно обосновалась в современной науке. Однако в физике «червоточин» нередко обнаруживается влияние «некаузальности». В сущности, нам приходится крепко держаться за привычные допущения, чтобы препятствовать путешествиям во времени. Основная проблема заключается в том, что «червоточины» могут соединять не только две удаленные точки пространства, но и будущее с прошлым.

В 1988 г. физик Кип Торн из Калифорнийского технологического института вместе с коллегами сделал поразительное (и рискованное) заявление: путешествия во времени не просто возможны, но и вполне вероятны при определенных условиях. Свое заявление эти ученые опубликовали не в каком-нибудь малоизвестном «маргинальном» издании, а в престижном журнале Physical Review Letters. Так впервые авторитетные физики, а не какие-то безумцы, высказали гипотезу об изменении хода самого времени. В ее основе лежало простое наблюдение: «червоточина» соединяет две области, существующие в разных периодах времени. Таким образом, «червоточина» может связывать настоящее с прошлым. Поскольку путешествие сквозь «червоточину» происходит почти мгновенно, можно было бы с помощью «червоточин» перемещаться назад во времени. В отличие от приспособления, описанного в романе Герберта Уэллса «Машина времени» и способного забросить героя на сотни тысяч лет в далекое будущее Англии после простого поворота стрелки на циферблате, для создания «червоточины» могут потребоваться огромные затраты энергии, получение которой в ближайшие века останется технически неосуществимым.

Еще одно аномальное следствие физики «червоточин» – создание «дочерних вселенных» в лабораторных условиях. Разумеется, мы не в состоянии воспроизвести Большой взрыв и стать свидетелями рождения нашей Вселенной. Но Алан Гут из Массачусетского технологического института, ученый, который внес немалый вклад в развитие космологии, несколько лет назад шокировал многих физиков утверждением, будто бы физика «червоточин» дает возможность самостоятельно создавать «дочерние вселенные» в лаборатории. При высокой концентрации тепла и энергии в камере может даже открыться «червоточина», служащая пуповиной, соединяющей нашу Вселенную с другой, значительно меньших размеров. Если это и вправду возможно, ученые получат беспрецедентный шанс увидеть процесс создания Вселенной в лабораторных условиях.

Мистики и гиперпространство

Некоторые из этих представлений не новы. В последние несколько столетий мистики и философы высказывали догадки о существовании других вселенных и туннелей между ними. С давних времен их занимало возможное существование иных миров, которые нельзя выявить с помощью зрения или слуха, тем не менее соседствующих с нашей Вселенной. Интриговало то, что, возможно, эти неизученные и неизведанные миры находятся совсем рядом, по сути дела, окружают нас, пронизывают нас повсюду, куда бы мы ни направлялись, но физически остаются для нас недосягаемыми, ускользают от наших органов чувств. Но все эти разговоры в конечном итоге оказывались пустыми и бесполезными, так как не существовало практического способа выразить эти идеи математически и, в конце концов, проверить их.

Еще один излюбленный литературный прием – переходы между нашей Вселенной и другими измерениями. Для авторов научной фантастики многомерность стала незаменимым инструментом, которым они пользуются как средой для межзвездных путешествий. Так как звезды в небе разделены астрономически огромными расстояниями, писатели-фантасты находят применение высшим измерениям, удобно сокращая путь между звездами. Вместо того чтобы преодолевать гигантские расстояния, двигаясь по прямому пути к другим галактикам, ракеты просто и мгновенно переходят в гиперпространство, деформируя окружающее их пространство. К примеру, в фильме «Звездные войны» гиперпространство служит убежищем, где Люк Скайуокер легко может ускользнуть от боевых звездолетов Империи. В телесериале «Звездный путь. Дальний космос девять» (Star Trek: Deep Space Nine) «червоточина» открывается вблизи отдаленной космической станции, позволяя за считаные секунды преодолевать гигантские расстояния и пересекать галактику. Космическая станция внезапно становится центром острого межгалактического конфликта, в котором стороны соперничают за право контролировать это жизненно важное связующее звено с другими областями галактики.

Со времен «Вылета-19» (Flight 19) – инцидента 30-летней давности, когда звено американских торпедоносцев-бомбардировщиков исчезло во время учебного полета в Карибском регионе, авторы мистических романов пользовались многомерностью как удобной разгадкой тайны Бермудского, или Дьявольского, треугольника. Некоторые писатели высказывали предположение, что самолеты и корабли, исчезающие в Бермудском треугольнике, на самом деле попадают в туннель, ведущий в другой мир.

Существование неуловимых параллельных миров веками порождало бесчисленные гипотезы религиозного свойства. Спириты гадали, переходят ли на самом деле души умерших близких в другое измерение. Британский философ XVII в. Генри Мор утверждал, что призраки и духи действительно существуют и населяют четвертое измерение. В труде «Руководство по метафизике» (Enchiridion Metaphysicum, 1671 г.) он отстаивал существование царства мертвых, недоступного нашему восприятию и служащего прибежищем для призраков и духов.

Богословы XIX в., не зная, где искать рай и ад, задумывались, нельзя ли обнаружить их в высших измерениях. Некоторые писали, что Вселенная состоит из трех параллельных плоскостей: земли, небес и ада. Сам Бог, согласно теологу Артуру Уиллинку, пребывает в мире, значительно удаленном от этих трех плоскостей: он живет в бесконечномерном пространстве.

Интерес к высшим измерениям достиг пика в 1870–1920 гг., когда «четвертое измерение» (пространственное, в отличие от известного нам четвертого временного) завладело воображением широкой публики и постепенно стало источником вдохновения во всех искусствах и науках, превратилось в метафору удивительного и таинственного. Четвертое измерение фигурирует в произведениях Оскара Уайльда, Ф. М. Достоевского, Марселя Пруста, Герберта Уэллса и Джозефа Конрада; оно способствовало созданию некоторых музыкальных произведений Александра Скрябина, Эдгара Вареза и Джорджа Антейла. Это измерение увлекало таких известных личностей, как психолог Уильям Джеймс, литератор Гертруда Стайн, революционер и социалист Владимир
Страница 11 из 13

Ленин.

Четвертое измерение вдохновляло Пабло Пикассо и Марселя Дюшана, оказало значительное влияние на развитие кубизма и экспрессионизма – двух наиболее видных течений в искусстве XX в. Историк Линда Далримпл Хендерсон пишет: «Подобно черным дырам, "четвертое измерение" обладает загадочными свойствами, окончательно разобраться в которых не могут даже сами ученые. Однако влияние идеи "четвертого измерения" было намного больше в сравнении с гипотезой о черных дырах или любыми другими научными гипотезами, выдвинутыми с 1919 г., за исключением теории относительности»[5 - Линда Далримпл Хендерсон «Четвертое измерение и неевклидова геометрия в современном искусстве» (Linda Dalrymple Henderson, The Fourth Dimension and Non-Euclidean Geometry in Modern Art, Princeton, N. J.: Princeton University Press, 1983), с. xix.].

Математиков тоже с давних пор интриговали альтернативные формы логики и невероятная геометрия, бросающая вызов всем условностям и здравому смыслу. К примеру, математик Чарльз Лютвидж Доджсон, преподававший в Оксфордском университете, порадовал не одно поколение школьников книгами, публикуя их под псевдонимом Льюис Кэрролл и вплетая в текст необычные математические концепции. Падая в кроличью нору или проходя сквозь зеркало, Алиса попадает в Страну чудес – удивительное место, где Чеширский кот исчезает, оставляя только улыбку, волшебные грибы превращают детей в великанов, а Болванщики празднуют «дни нерождения». Зеркало каким-то образом соединяет мир Алисы с другой страной, где все говорят загадками и здравый смысл не такой уж и здравый.

Отчасти источником вдохновения для Льюиса Кэрролла послужили идеи, скорее всего, почерпнутые у великого немецкого математика XIX в. Георга Бернхарда Римана, первым заложившего математические основы геометрии многомерных пространств. Риман изменил ход развития математики в следующем веке, продемонстрировав, что эти вселенные, какими бы диковинными они ни казались непосвященному, абсолютно самосогласованны и подчиняются своей внутренней логике. Для иллюстрации одной из этих идей возьмите достаточно толстую стопку листов бумаги. А теперь представьте, что каждый лист – это целый мир, который подчиняется своим физическим законам, отличным от законов всех прочих миров. Тогда наша Вселенная – не единственная в своем роде, а один из множества возможных параллельных миров. Разумные существа могут населять любую из этих плоскостей, абсолютно не подозревая о существовании других, им подобных. На одном листе может размещаться пасторальная английская провинция Алисы. На другом – диковинная Страна чудес, населенная вымышленными существами.

Как правило, на каждой из этих параллельных плоскостей жизнь продолжается независимо от жизни на других плоскостях. Но в отдельных случаях плоскости пересекаются, на краткий миг рвется сама ткань пространства, в итоге между двумя вселенными открывается дыра, или проход. Подобно «червоточинам», возникающим в сериале «Звездный путь. Дальний космос девять», эти проходы дают возможность путешествовать между мирами, служат космическими мостами, соединяющими две разные вселенных или две разные точки в пределах одной Вселенной (рис. 1.2). Неудивительно, что Кэрролл убедился: дети гораздо восприимчивее к таким возможностям, нежели взрослые, со временем демонстрирующие в своих представлениях о пространстве и логике все более явную косность. По сути дела, риманова теория многомерности в изложении Льюиса Кэрролла стала неотъемлемой частью детской литературы и фольклора и за несколько десятилетий породила немало других классических образов детской литературы, в том числе Страну Оз Дороти и Нетландию Питера Пэна.

Однако в отсутствие какого бы то ни было экспериментального подтверждения или убедительной физической мотивации этим теориям параллельных миров как отрасли науки грозила опасность зачахнуть. На протяжении двух тысячелетий ученые изредка обращались к понятию многомерности, только чтобы отмести его как не подлежащую проверке и, следовательно, абсурдную идею. Хотя с математической точки зрения риманова геометрия представляла интерес, ее отвергли как бесполезную, несмотря на всю продуманность. Ученые, отважившиеся рискнуть своей репутацией и обратиться к многомерности, вскоре обнаруживали, что над ними потешается все научное сообщество. Многомерное пространство стало последним прибежищем мистиков, оригиналов и шарлатанов.

В этой книге мы изучим труды мистиков-первопроходцев, главным образом потому, что они изобрели остроумные способы, помогающие неспециалистам «визуализировать» возможный вид многомерных объектов. Эти хитрости оказались полезными для понимания того, как теории высших измерений могут быть восприняты широкой аудиторией.

Кроме того, изучая труды этих ранних мистиков, мы отчетливее понимаем, чего недоставало их исследованиям. Мы видим, что в их умозаключениях отсутствовали две важные составляющие: физическая и математическая основа. Рассматривая их с позиций современной физики, теперь мы понимаем, что недостающая физическая основа – это упрощение законов природы в гиперпространстве и возможность объединения всех взаимодействий природы с помощью исключительно геометрических параметров. Недостающая математическая основа называется теорией поля, это универсальный математический язык теоретической физики.

Теория поля – язык физики

Понятие полей впервые ввел выдающийся британский ученый XIX в. Майкл Фарадей. Сын небогатого кузнеца, Фарадей был гением-самоучкой, ставившим сложные опыты с электричеством и магнетизмом. Он представлял силовые линии, которые, подобно длинным побегам ползучего растения, исходят во все стороны от частиц с электрическим и магнитным зарядом и заполняют все пространство. Благодаря своим приборам Фарадей мог измерить силу линий, исходящих от источников магнитного или электрического заряда в любой точке своей лаборатории. Таким образом, он присваивал этой или любой другой точке в пространстве ряд параметров, таких как величина и направление силы. Всю совокупность этих параметров в любой точке пространства он рассматривал как единое целое и ввел для нее термин «поле». (Известна одна история из жизни Майкла Фарадея. Когда он уже достиг известности, слава его простиралась так широко, что его лабораторию часто посещали любопытствующие зрители. Однажды один из них спросил, в чем польза от работы Фарадея, и тот ответил: «А в чем польза от ребенка? Он вырастает и становится взрослым человеком». Однажды лабораторию Фарадея посетил Уильям Гладстон, в то время министр финансов Великобритании. Не имея никакого представления о науке, Гладстон саркастически осведомился у Фарадея, могут ли огромные электрические устройства в его лаборатории принести хоть какую-нибудь пользу Англии. Фарадей ответил: «Сэр, я не знаю, для чего будут применяться эти машины, зато уверен, что когда-нибудь их станут облагать налогом». В настоящее время значительная доля совокупного богатства Англии инвестируется в плоды трудов Фарадея.)

Попросту говоря, поле – это совокупность параметров, определенных в каждой точке пространства, полностью описывающих силу в этой точке. К примеру, три параметра в каждой
Страница 12 из 13

точке пространства могут описывать напряженность и направление магнитных силовых линий. Другие три параметра где-либо в пространстве могут описывать электрическое поле. Эта идея родилась у Фарадея, когда он думал о поле, которое пашет земледелец. Поле земледельца занимает двумерный участок пространства. В каждой точке поля можно определить ряд параметров (которые описывают, к примеру, количество зерен, находящихся в этой точке). Однако поле Фарадея занимает трехмерный участок пространства. В каждой его точке можно определить шесть параметров, описывающих магнитные и электрические силовые линии.

Эффективность фарадеевой идеи поля состоит в том, что в виде поля можно представить все взаимодействия природы. Но нам понадобится еще один компонент, прежде чем мы сможем понять природу любой силы: мы должны иметь возможность записывать формулы, которым подчиняются поля. Прогресс последних ста лет в развитии теоретической физики можно обобщенно сформулировать как поиск уравнений поля для природных сил взаимодействия.

К примеру, в 60-х гг. XIX в. шотландский физик Джеймс Клерк Максвелл записал уравнения для электрического и магнитного полей. В 1915 г. Эйнштейн открыл уравнения гравитационного поля. После многочисленных неудач в 70-е гг. XX в. наконец были записаны уравнения для поля сил субатомных частиц по результатам более ранних работ Чжэньнин Янга и его ученика Р. Л. Миллса. Такие поля, обуславливающие взаимодействие всех субатомных частиц, в настоящее время называются полями Янга – Миллса. Но в том же веке физикам пришлось поломать голову над вопросом, почему уравнения субатомного поля так разительно отличаются от уравнений поля, выведенных Эйнштейном, – иными словами, почему силы ядерного взаимодействия настолько отличаются от сил гравитации. Некоторые выдающиеся умы пытались подступиться к этой задаче, но потерпели фиаско.

Возможно, причина их неудачи в том, что они попались в ловушку здравого смысла. Ограниченные тремя-четырьмя измерениями, уравнения поля для мира субатомных частиц и гравитации трудно отождествить. Преимущество теории гиперпространства заключается в том, что поля Янга – Миллса, поля Максвелла и поля Эйнштейна можно с удобством разместить внутри гиперпространственного поля. Мы видим, что эти поля укладываются в гиперпространственное поле, совпадая друг с другом точно, как детали головоломки. Еще одно преимущество теории поля в том, что она позволяет нам вычислить точные параметры энергии, при которых можно ожидать формирования в пространстве и времени «червоточин». Следовательно, в отличие от древних, у нас есть математические инструменты для строительства машин, которые когда-нибудь подчинят нам пространство и время.

Тайна сотворения

Значит ли это, что любители поохотиться на крупную дичь могут уже сейчас готовиться к сафари на мезозойских динозавров? Нет. Торн, Гут и Фройнд в один голос скажут, что затраты энергии для исследования таких пространственных аномалий значительно превосходят все ее запасы, имеющиеся на Земле. Фройнд напомнит, что для проникновения в десятое измерение понадобится в квадрильон раз больше энергии, чем может выработать наш самый большой ускоритель частиц.

Затраты энергии, необходимые для того, чтобы связать в узел пространство и время, настолько велики, что ее получение останется недоступным в ближайшие несколько веков или даже тысячелетий, если эта цель вообще когда-нибудь будет достигнута. Даже если все страны мира объединятся с целью строительства установки, позволяющей исследовать гиперпространство, их ждет разочарование. Как указывает Гут, для создания дочерней Вселенной в лабораторных условиях требуется температура порядка 1000 триллионов триллионов градусов, значительно превосходящая все наши возможности. Даже внутри звезды температура гораздо ниже. Следовательно, хотя законы Эйнштейна и квантовой теории, возможно, и позволяют нам путешествовать во времени, это недоступно нам, землянам, едва научившимся преодолевать слабое поле тяготения родной планеты. Мы можем восхищаться выводами исследований «червоточин», но пользоваться их потенциалом в состоянии только развитые внеземные цивилизации.

Лишь в один период времени энергия столь колоссальных масштабов могла быть доступна – в момент сотворения мира. По сути дела, теорию гиперпространства нельзя подтвердить с помощью крупнейших ускорителей частиц, имеющихся у нас, потому что эта теория на самом деле представляет собой теорию сотворения мира. Только момент Большого взрыва делает наглядной мощь теории гиперпространства в действии. Здесь напрашивается волнующая гипотеза, согласно которой теория гиперпространства способна открыть тайну зарождения Вселенной.

Введение высших измерений может оказаться необходимым, чтобы разгадать тайны сотворения мира. Согласно этой теории до Большого взрыва наш космос представлял собой идеальную десятимерную вселенную – мир, в котором возможны путешествия между измерениями. Однако этот десятимерный мир был нестабильным и в конце концов раскололся надвое, образовав две обособленные вселенные: четырехмерную и шестимерную. В этом космическом катаклизме родилась Вселенная, в которой живем мы. Наша четырехмерная Вселенная расширилась мгновенно, в то время как парная ей шестимерная резко сократилась, сжалась почти до бесконечно малых размеров. Этим объясняется происхождение Большого взрыва. Если данная теория верна, она показывает, что стремительное расширение Вселенной было всего-навсего незначительным последствием более масштабного катаклизма, раскола самих пространства и времени. Значит, энергию, питающую наблюдаемое расширение Вселенной, дает гибель десятимерного пространства и времени. Согласно этой теории, далекие звезды и галактики ввиду изначального коллапса десятимерного пространства и времени удаляются от нас с астрономической скоростью.

Эта же теория предполагает, что у нашей Вселенной есть близнец-карлик – Вселенная-спутник, скрученная в шестимерный шарик, который слишком мал, чтобы его увидеть. Эта шестимерная Вселенная не только не является никчемным придатком нашего мира, но и в конце концов может стать нашим спасением.

Бегство из гибнущей Вселенной

Часто можно услышать, что единственные константы в человеческом обществе – это смерть и налоги. Специалисты по космологии твердо знают одно: когда-нибудь наша Вселенная погибнет. Некоторые убеждены, что причиной гибели Вселенной станет Большое сжатие (Big Crunch). Гравитация даст обратный ход расширению, вызванному Большим взрывом, и вновь сожмет звезды и галактики в первозданную массу. По мере сжатия звезд температура будет стремительно расти до тех пор, пока вся материя и энергия Вселенной не сожмутся в гигантский огненный шар, который и уничтожит Вселенную в привычном для нас виде. Все формы жизни изменятся до неузнаваемости. Спасаться будет негде. Такие ученые и философы, как Чарльз Дарвин и Бертран Рассел, скорбно писали о тщете нашего жалкого существования, зная, что наша цивилизация неизбежно погибнет с исчезновением нашего мира. Видимо, законы физики вынесли окончательный, не подлежащий отмене смертный приговор
Страница 13 из 13

всей разумной жизни во Вселенной.

По мнению покойного физика Джералда Фейнберга из Колумбийского университета, есть все же одна, возможно, единственная надежда избежать последней катастрофы. Он полагал, что разумная жизнь в конце концов, за миллиарды лет овладев тайнами многомерного пространства, воспользуется иными измерениями как аварийным люком, чтобы спастись от Большого сжатия. В последние мгновения коллапса нашей Вселенной ее сестра вновь откроется, и перемещение между измерениями станет возможным. Когда вся материя погибнет в последние мгновения перед концом света, возможно, разумным формам жизни удастся переместиться по туннелю в многомерное пространство или в альтернативную вселенную, ускользнув от, казалось бы, неизбежной гибели нашей Вселенной. В этом случае, уже находясь в многомерном убежище, эти разумные формы жизни увидят гибель коллапсирующей Вселенной в ходе ужасного катаклизма. Наша родная Вселенная будет смята, изменится до неузнаваемости, температура в ней резко поднимется, вызывая еще один Большой взрыв. Со своего наблюдательного пункта в гиперпространстве разумные формы жизни воочию увидят редчайшее из всех научных явлений – создание еще одной Вселенной, их нового дома.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (http://www.litres.ru/pages/biblio_book/?art=23300755&lfrom=931425718) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

notes

Сноски

1

Как ни странно, даже у современных физиков по-прежнему нет однозначного решения этой задачи, однако за несколько десятилетий мы просто свыклись с мыслью, что свет может перемещаться в вакууме, хотя в нем и нечему совершать волнообразные колебания. – Прим. авт.

2

Безусловно, теория высших измерений не относится к сугубо отвлеченным, так как простейшее следствие теории Эйнштейна – атомная бомба, изменившая судьбы человечества. В некотором смысле введение высших измерений стало одним из кардинальных научных открытий в нашей истории. – Прим. авт.

3

Фройнд усмехается при вопросе о том, когда мы наконец увидим эти дополнительные измерения. Мы не можем видеть высшие измерения потому, что они «скручены» в настолько крошечный шарик, что в таком виде их уже не различить. Согласно теории Калуцы – Клейна размер этих скрученных измерений называется планковской длиной*, она в 100 миллиардов миллиардов (квинтиллион) раз меньше размера протона, т. е. слишком мала для изучения с помощью даже самых больших ускорителей частиц, какими мы располагаем. Специалисты в области физики высоких энергий надеялись, что Сверхпроводящий суперколлайдер стоимостью $11 млрд (ССК, строительство которого было отменено конгрессом в октябре 1993 г.) косвенным образом поможет им увидеть слабые проблески гиперпространства. – Прим. авт.

* Это невероятно малое расстояние еще не раз появится здесь, в книге. Оно представляет собой основной масштаб расстояний, характеризующий любую квантовую теорию гравитации. Причина этого явления довольно проста. В любой теории гравитации сила гравитационного взаимодействия измеряется с помощью гравитационной постоянной (постоянной Ньютона). Но физики пользуются упрощенной системой единиц, в которой скорость света с принята равной единице. Это означает, что 1 секунда эквивалентна 186 000 миль (297 600 км). Кроме того, постоянная Планка, деленная на 2?, также принята равной единице; таким образом, задаются численные соотношения между секундами и эргами энергии. В этих странных, но удобных единицах все вплоть до постоянной Ньютона можно свести к сантиметрам. Если же вычислить длину, ассоциирующуюся с постоянной Ньютона, мы получим планковскую длину, или 10

 см, или 10

млрд эВ. Таким образом, все квантовые гравитационные эффекты определяются в сравнении с этим малым расстоянием. В частности, размер незримых высших измерений – планковская длина.

Комментарии

1

Это настолько новый предмет (На момент первого издания книги – 1994 г. – Прим. пер.), что для него еще не существует общепринятого термина, которым пользовались бы физики-теоретики, ссылаясь на теории высших измерений. Строго говоря, когда физики ведут речь об этой теории, они ссылаются на конкретную теорию – Калуцы – Клейна, супергравитации, суперструн, хотя термин «гиперпространство» обычно применяется, когда имеются в виду высшие измерения, а «гипер» – корректная научная приставка для геометрических объектов, относящихся к миру высших измерений. В соответствии с распространенной практикой я пользуюсь термином «гиперпространство», говоря о высших измерениях.

2

Хайнц Пейджелс «Идеальная симметрия: Поиски начала времен» (Heinz Pagels, Perfect Symmetry: The Search for the Beginning of Time, New York: Bantam, 1985), с. 324.

3

Питер Фройнд, в интервью с автором, 1990 г.

4

Процитировано в: Абрахам Пайс. Научная деятельность и жизнь Альберта Эйнштейна» (Abraham Pais, Subtle Is the Lord: The Science and the Life of Albert Einstein, Oxford: Oxford University Press, 1982), с. 235.

5

Линда Далримпл Хендерсон «Четвертое измерение и неевклидова геометрия в современном искусстве» (Linda Dalrymple Henderson, The Fourth Dimension and Non-Euclidean Geometry in Modern Art, Princeton, N. J.: Princeton University Press, 1983), с. xix.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Здесь представлен ознакомительный фрагмент книги.

Для бесплатного чтения открыта только часть текста (ограничение правообладателя). Если книга вам понравилась, полный текст можно получить на сайте нашего партнера.

Adblock
detector