Ритм Вселенной. Как из хаоса возникает порядок
Стивен Строгац
В книге Стива Строгаца представлен увлекательный обзор того, как происходит спонтанное упорядочение ритмов в природе. Автор затрагивает широкий спектр научных и математических вопросов, но основное внимание уделяет феномену синхронизации, который наблюдается в свечении светлячков, ритмичном биении сердец, движении планет и астероидов. Используя для иллюстрации своих глубоких идей интересные метафоры и жизненные ситуации, Строгац создал настоящий шедевр, который погружает читателя в восхитительный мир научных открытий.
Книга будет полезна всем, кто интересуется естественными науками и хочет лучше разобраться в устройстве окружающего мира.
На русском языке публикуется впервые.
Стивен Строгац
Ритм Вселенной. Как из хаоса возникает порядок
Научный редактор Александр Минько
Издано с разрешения автора при содействии Brockman, Inc.
Все права защищены. Никакая часть настоящего издания ни в каких целях не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, будь то электронные или механические, включая фотокопирование и запись на магнитный носитель, если на это нет письменного разрешения издателя.
© Steven Strogatz, 2004
© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2017
* * *
Посвящается Арту Уинфри, наставнику, источнику вдохновения и другу
Предисловие
В сердце Вселенной ощущается постоянное, неуклонное биение: звучание синхронизированных циклических процессов. Это биение буквально пропитывает природу на всех уровнях, начиная с атомного ядра и заканчивая космосом. Каждый вечер вдоль приливных рек Малайзии тысячи светлячков собираются в мангровых лесах и мерцают в унисон, причем в их среде нет какого-либо лидера или внешнего источника, который задавал бы ритм этого мерцания. Триллионы электронов маршируют в ногу в сверхпроводнике, обеспечивая совершенно беспрепятственное прохождение тока по нему: сопротивление сверхпроводника оказывается равным нулю. В Солнечной системе гравитационный синхронизм может приводить к выбрасыванию огромных валунов из пояса астероидов в направлении Земли: считается, что катастрофическое столкновение одного такого метеорита с Землей погубило динозавров. Даже человеческое тело представляет собой симфонию, поддерживаемую скоординированным срабатыванием тысяч клеток, задающих ритм сокращений сердца человека. В каждом случае эти «подвиги» синхронизма происходят спонтанно, как если бы сама природа проявляла сверхъестественное, необъяснимое стремление к порядку.
С давних пор это явление представляет для ученых неразрешимую загадку: существование спонтанного порядка во Вселенной ставит их в тупик. На первый взгляд, законы термодинамики диктуют обратное: подчиняясь им, природа должна была бы неуклонно деградировать в сторону все большего беспорядка, все большей энтропии. Однако мы наблюдаем вокруг себя множество величественных структур – галактики, клетки, экосистемы, людей, – которым удается каким-то образом собирать самих себя. Эта загадка не дает покоя научному сообществу и в наши дни.
Лишь в очень немногих ситуациях у нас есть понимание того, каким образом порядок возникает сам по себе. Первой из таких ситуаций был особый вид порядка в физическом пространстве, связанный с идеально повторяющимися структурами. Это тот вид порядка, который возникает, когда температура воды опускается ниже точки замерзания и триллионы молекул воды спонтанно образуют жесткий симметричный кристалл льда. Однако объяснение порядка во времени оказалось более проблематичным. Даже простейший вариант, когда одни и те же события наступают одновременно, оказался трудноуловимым. Это тот порядок, который мы называем синхронизмом.
Поначалу может показаться, что здесь, вообще говоря, нечего объяснять. Вы можете договориться со своим приятелем встретиться в ресторане, и если оба вы достаточно пунктуальны, то ваше появление в ресторане будет синхронизированным. Столь же тривиальный вид синхронизма запускается реакцией на какой-либо общий стимул. Стая голубей, напуганных громким звуком из выхлопной трубы автомобиля, поднимется в воздух практически одновременно, причем в течение какого-то времени они могут даже синхронно взмахивать своими крыльями, однако это происходит лишь потому, что все они одинаково реагируют на один и тот же звук. Невозможно ведь подозревать, что голуби каким-то образом договорились между собой о ритме взмахов крыльями; к тому же синхронность их действий пропадает уже спустя несколько секунд после взлета. Другие виды кратковременного синхронизма могут возникать по чистой случайности. Воскресным утром колокола двух разных церквей могут случайно зазвонить в одно и то же время, и этот синхронизм будет поддерживаться в течение какого-то (непродолжительного) времени, после чего они начнут звонить вразнобой. Еще одна возможная ситуация: сидя в своем автомобиле на перекрестке в ожидании разрешающего сигнала светофора, вы можете заметить, что указатель поворота автомобиля, стоящего впереди вас, мигает практически синхронно с указателем поворота вашего автомобиля – и так может продолжаться в течение нескольких секунд. Такой синхронизм является чистой случайностью и его обсуждение не представляет для нас никакого интереса.
Несомненный интерес представляет для нас синхронизм, сохраняющийся длительное время. Когда два события наступают одновременно и этот синхронизм поддерживается в течение долгого времени, то говорить о случайном характере такого синхронизма уже не приходится. Более того, в силу каких-то причин такой непрекращающийся синхронизм доставляет нам, людям, удовольствие. Нам нравится танцевать вместе, петь хором, играть в оркестре. В своей наиболее утонченной форме постоянный синхронизм может представлять собой поистине захватывающее зрелище, как, например, солдаты, марширующие на воинском параде, или выступления команд на соревнованиях по синхронному плаванию. Ощущение высокого исполнительского мастерства усиливается, когда зрители не знают, каких очередных чудес синхронизма им стоит ожидать в следующий момент времени. Мы интерпретируем постоянный синхронизм как признак кропотливого труда, высокого мастерства, точного планирования и хореографического искусства.
Но когда синхронизм наблюдается между неодушевленными объектами, наподобие электронов или биологических клеток, это кажется почти невероятным. Удивительно наблюдать совместные действия живых существ – тысяч светлячков, стрекочущих в унисон летней ночью, или косяков рыб, совершающих одинаковые элегантные волнообразные движения, – но еще более удивительно видеть скопления неодушевленных объектов, которые сами по себе совершают синхроные действия. Эти явления столь необъяснимы, что кто-то даже отказывается верить в их существование, приписывая их иллюзиям, случайным совпадениям или ошибкам восприятия. Другие же попросту впадают в мистицизм, пытаясь объяснить синхронизм действием сверхъестественных сил космоса.
Буквально до последнего времени изучением
синхронизма занимались энтузиасты-одиночки – биологи, физики, математики, астрономы, инженеры и социологи, – каждый из которых замыкался в своей узкой области знаний, действуя по независимым друг от друга (на первый взгляд) направлениям исследования. Мало-помалу на основе фрагментарных представлений, выработанных в этих и других узких дисциплинах, начала формироваться наука о синхронизме. Эта новая наука сосредоточивается на изучении так называемых «связанных осцилляторов». Группы светлячков, планет или клеток-задатчиков ритма представляют собой совокупности осцилляторов – объектов, автоматически совершающих циклические действия, то есть действия, повторяющиеся снова и снова через более или менее регулярные интервалы времени. Светлячки мигают, планеты движутся по определенным орбитам, клетки-задатчики ритма (ритмоводители сердца) срабатывают одновременно. Говорят, что два или большее число осцилляторов связаны между собой, если некий физический или химический процесс позволяет им влиять друг на друга. Светлячки взаимодействуют между собой с помощью света. Планеты влияют друг на друга посредством силы гравитации. Клетки сердца передают туда и обратно электрические импульсы. Как следует из этих примеров, природа использует каждый доступный ей канал, чтобы предоставить возможность своим осцилляторам взаимодействовать друг с другом. Результатом такого взаимодействия зачастую оказывается синхронизм, при котором все осцилляторы начинают действовать одинаково.
Тем из нас, кто работает в этой зарождающейся области науки, задают примерно одни и те же вопросы. Как именно связанные осцилляторы синхронизируют свои действия – и при каких условиях? Когда такой синхронизм оказывается невозможным, а когда он оказывается неизбежным? Какие другие способы организации могут возникнуть, когда синхронизм пропадает? И какими могут быть практические применения знаний, которые накапливаются в этой области науки?
Эти вопросы волнуют меня на протяжении последних двадцати лет – сначала как выпускника Гарвардского университета, затем как профессора прикладной математики в Массачусетском технологическом институте и Корнельском университете, где я по сей день занимаюсь преподавательской и исследовательской деятельностью в области теории сложности и хаоса. Однако интерес к изучению циклических процессов возник у меня еще раньше, когда в бытность мою студентом-первокурсником меня посетило озарение. Для одного из первых научных экспериментов м-р Ди Курцио вручил каждому из нас по секундомеру и маленькому игрушечному маятнику, который представлял собой хитроумное устройство с выдвижным («телескопическим») стержнем, длину которого можно было пошагово регулировать; это устройство напоминало старые модели подзорных труб, которые вы наверняка видели в фильмах про пиратов. Наша задача заключалась в изменении периода колебаний маятника – времени, которое требуется для совершения одного полного колебания маятника, – и вычислении зависимости периода колебаний маятника от длины стержня, на котором он крепится. Иными словами, нам предстояло выяснить, как поведет себя маятник при удлинении стержня: станет колебаться быстрее, медленнее или период его колебаний останется прежним. Чтобы ответить на этот вопрос, мы «настроили» наши маятники на минимальную длину, измерили период его колебаний и отобразили результат на листе бумаги, разлинованном в клетку. Затем мы несколько раз повторили эксперимент, каждый раз увеличивая длину стержня на одно деление. Когда я отобразил на листе бумаги четвертую или пятую точку своего будущего графика, я заметил, что он похож на параболическую кривую. Оказалось, что колебания маятника подчиняются параболическому закону. (Что представляет собой парабола, мне было известно из курса алгебры.) Сделав это открытие, я испытал смешанные чувства удивления и страха. На меня снизошло озарение: я узнал о существовании тайного и восхитительного мира, который можно было исследовать лишь математическими методами. Я влюбился в этот мир буквально с первого взгляда; со временем мое восхищение этим миром лишь окрепло.
С тех пор прошло тридцать лет, но я по-прежнему очарован математической природой окружающего нас мира и особенно циклическими процессами, происходящими в нем (например, периодическими колебаниями маятника). Однако меня занимает изучение не столько какого-либо отдельно взятого колебательного процесса, сколько большой совокупности колебательных процессов, происходящих одновременно, то есть изучение упоминавшихся выше связанных осцилляторов. Со временем мне удалось разработать достаточно простые модели, которые, тем не менее, можно использовать для описания очень сложных совокупностей объектов. Разработанные мною идеализированные системы уравнений с достаточной степенью точности моделируют групповое поведение светлячков или сверхпроводников. Я пытаюсь использовать вычислительные методы и компьютеры, чтобы понять, как из хаоса рождается порядок. Эти загадки особенно интересны для меня тем, что являются, образно говоря, передним краем математики. Два связанных осциллятора не представляют собой проблемы: их поведение было изучено еще в начале 1950-х годов. Но когда речь идет о сотнях и тысячах связанных осцилляторов, наука по-прежнему бессильна. Нелинейная динамика систем со столь большим количеством переменных все еще недосягаема для нас. Даже наличие суперкомпьютеров не помогает нам описать коллективное поведение гигантских систем осцилляторов.
И все же благодаря объединенным усилиям математиков и физиков всего мира за последнее десятилетие нам удалось описать один специальный случай связанных осцилляторов, что открыло путь к более глубокому пониманию феномена синхронизма. Если предположить, что все осцилляторы в данной группе почти идентичны и что они в одинаковой степени связаны между собой, то их динамика поддается математической трактовке. В частях I и II этой книги я рассказываю о том, как моим коллегам и мне удалось решить этот класс теоретических проблем и что означает их решение для синхронизма в реальном мире: в части I – для осцилляторов живой природы (биологические клетки, животные и люди), а затем, в части II, – для осцилляторов неживой природы (маятники, планеты, лазеры и электроны). В части III рассказывается о передних рубежах синхронизма, когда мы отказываемся от использования упрощающих предположений, выдвинутых нами ранее. Эта сфера остается в значительной мере неисследованной и включает ситуации, где место осцилляторов занимают хаотические системы или где они связаны менее симметричными способами со своими соседями в трехмерном пространстве или в сложных сетях, охватывающих огромные территории.
Настоящая книга представляет собой попытку синтезировать значительный объем знаний по этому предмету, которые были накоплены учеными, работавшими в разных дисциплинах, на разных континентах и даже в разных столетиях. Наука, которая пыталась изучить явление синхронизма, основывается на работах ряда выдающихся умов XX столетия, многие из которых известны едва ли не каждому из нас, тогда как другие должны быть
известны каждому. В их числе такие величайшие физики, как Альберт Эйнштейн, Ричард Фейнман, Брайан Джозефсон и Ёсики Курамото; математики Норберт Винер и Пал Эрдёш; специалист в области социальной психологии Стенли Мильграм; химик Борис Белоусов; теоретик хаоса Эдвард Лоренц; а также биологи Чарльз Чейслер и Артур Уинфри.
Мое имя тоже связано с исследованиями, которые внесли определенный вклад в это новое научное направление. Разумеется, я не питаю никаких иллюзий относительно своего места в истории, но хочу лишь рассказать читателям о том, что представляет собой работа в научной сфере: долгое блуждание впотьмах, непростой путь к научному открытию, изобилующий ошибками и разочарованиями, радость открытия, превращение студента в начинающего научного работника, а затем и в наставника молодых ученых. Пытаясь донести до самого широкого круга читателей мысль о необычайной важности математики в современной науке, я старался избегать в своей книге математических формул и полагался исключительно на метафоры и образы из повседневной жизни, иллюстрирующие ключевые идеи математики.
Надеюсь, читатели разделят мое восхищение необычайным многообразием синхронизма в окружающем нас мире и способностью математики объяснить его. Синхронизм – не только загадочное, но и восхитительное явление. Загадочное – потому что синхронизм, на первый взгляд, не считается с законами физики (хотя в действительности он базируется на этих законах – зачастую весьма оригинальными способами). С другой стороны, синхронизм приводит меня в восхищение, поскольку он порождает что-то наподобие космического балета – представления, которое разыгрывается на самых разнообразных сценах, начиная с человеческого тела и заканчивая Вселенной в целом. В то же время невозможно переоценить важность синхронизма. Наше базовое понимание синхронизма уже породило такие технологические чудеса, как глобальная система позиционирования, лазер и самые чувствительные в мире детекторы, используемые в медицине без хирургического вмешательства для определения точного местонахождения поврежденных тканей в мозге человека, страдающего эпилепсией; в технике – для поиска мельчайших трещин в крыльях самолета; в геологии – для поиска месторождений нефти, скрывающихся глубоко под землей. Выясняя, что происходит в случае, когда синхронизм нарушается, математики помогают кардиологам найти причину фибрилляции, смертельно опасной аритмии, которая ежегодно уносит жизни сотни тысяч людей – внезапно и без предупреждения, даже тех, кто ранее не жаловался на проблемы с сердцем. И это лишь один пример возможностей, которыми мы сейчас располагаем благодаря нашему растущему, но все еще находящемуся в зачаточном состоянии пониманию синхронизма.
Я глубоко благодарен судьбе за возможность на протяжении всей моей карьеры работать со многими блестящими и творческими умами. Исследования, о которых рассказывается в этой книге, выполнялись в тесном сотрудничестве с моими консультантами Артом Уинфри, Ричардом Кронауером, Чаком Чейслером и Нэнси Копелл; моими научными сотрудниками Ренни Миролло, Полом Мэтьюзом, Куртом Визенфельдом, Джими Свифтом, Кевином Куомо, Элом Оппенгеймом и Тимом Форрестом; а также моими бывшими студентами Синьей Ватанабе и Дунканом Уоттсом. Благодарю вас за то, что были мне надежными спутниками во время нашего нелегкого путешествия в дебри синхронизма.
Другие ученые помогли улучшить эту книгу. Джек Кауен поделился со мной приятными воспоминаниями о совместной работе с Норбертом Винером в Массачусетском технологическом институте в конце 1950-х годов и познакомил меня с малоизвестной, но глубоко человечной историей, связанной с открытием двойного спектра. Лу Пекора подробно рассказал мне о том, как вместе с Томом Кэрролом он пришел к открытию синхронизированного хаоса. Джим Торп с присущими ему мудростью и мягким юмором ответил на мои вопросы относительно силовой сетки. Седрик Лангборт любезно перевел для меня письма Гюйгенса о взаимовлиянии часов. Джо Бернс, Эрик Герцог, Крис Лобб, Чарли Маркус, Радж Рой и Джо Такахаси предложили чрезвычайно ценные комментарии к ранним наброскам текста этой книги. Марджи Нельсон с присущим ей сочетанием научного суждения и художественного таланта подготовила иллюстрации. Хочу выразить особую признательность Арту Уинфри за его глубокие и остроумные идеи по поводу синхронизма, а главное – за его поистине героические усилия по прочтению этого манускрипта от корки до корки, несмотря на крайне сложные обстоятельства, которые сопутствовали этому чтению.
Выражаю благодарность Линди Уильямс, Стивену Тайену, Герберту Хьюи, Тому Гиловху и всем остальным моим друзьям, которые заботливо оберегали автора этой книги от невзгод и проблем, навалившихся на него на ранних стадиях подготовки книги к публикации; Карин Дашифф Гилович, которая помогала мне обрести собственный голос; а также Алана Алда – моего незаменимого партнера по сеансам мозгового штурма, который научил меня, как нужно подходить к творческому процессу. (Правда, мне не удалось воспользоваться его советом относительно того, как написать первый черновой вариант книги за один присест. Может быть, это удастся мне в следующий раз…)
Мои коллеги в Корнельском университете, в частности Ричард Рэнд и заведующий моего отдела Тим Хили, обеспечивали мне моральную поддержку в течение всего изнурительного процесса написания этой книги и были очень внимательны ко мне, когда видели, что мои мысли витают где-то далеко-далеко. Благодарю вас, коллеги, за понимание.
Мои литературные агенты Катинка Мэтсон и Джон Брокман чутко и с огромным энтузиазмом реагировали на каждое мое обращение. Джон предложил мне общее направление этой книги, как только услышал от меня ее описание. Катинка заботливо наставляла меня относительно всех аспектов процесса написания книги, начиная с составления плана и заканчивая публикацией.
Писателю трудно даже мечтать о лучшем издательском коллективе, чем коллектив издательства Hyperion Books. В частности, сотрудница редакции Кайра Гепфорд была неизменно любезна, оптимистично настроена и эффективна. Художественный редактор Фил Роуз придумал запоминающуюся и красивую обложку, которая, на мой взгляд, уловила самую суть синхронизма. Выражаю огромную благодарность своему редактору, Уиллу Швальбе, чей острый глаз, хороший вкус и ощущение структуры улучшили мою книгу во многих отношениях. Его неослабевающий энтузиазм по отношению к данному проекту побуждал меня к энергичным действиям в те моменты, когда это было особенно необходимо.
Хочу также поблагодарить членов своей семьи за их любовь и моральную поддержку, особенно это относится к моему отцу, который всегда был на моей стороне, подбадривал, улыбался и старался вселить в меня оптимизм. Невероятная самоотверженность моей тещи, Ширли Шиффман, дала мне возможность подолгу засиживаться за своей книгой, не чувствуя угрызений совести за то, что не уделяю достаточного внимания моим маленьким дочерям. Благодарю вас, мои крошки: Ли – за то, что, научившись ходить, вернула меня к действительности, и Джоанну – за то, что родилась в самый подходящий
момент – не слишком рано и не слишком поздно. Моя жена, Кэрол, проявляла свою любовь всеми доступными ей способами, выслушивая меня, читая мои рукописи, уговаривая и прощая меня, подсказывая, как нужно писать, в каких случаях следует развить мысль, а в каких – сократить текст. Ее душевная щедрость предоставила мне возможность полностью погрузиться в процесс написания книги.
Наконец, мне хотелось бы поблагодарить граждан Соединенных Штатов за их доверие и дальновидность. Поддерживая американские исследовательские учреждения посредством таких организаций, как Национальный научный фонд, налоги, выплачиваемые гражданами Соединенных Штатов, обеспечивают ученым самое ценное из того, что они могли бы желать, – возможность следовать за своим воображением туда, куда оно только может завести их. Надеюсь, вы получаете такое же удовольствие от наших открытий, какое получаем мы сами.
Часть I. Жизнь в синхронизме
Глава 1. Светлячки и неизбежность синхронизма
«Примерно двадцать лет тому назад я увидел – или мне показалось, что увидел – синхронное, или одновременное, мерцание светлячков. Я не мог поверить своим глазам, поскольку возможность такого явления среди насекомых, несомненно, противоречит любым законам природы»[1 - Philip Laurent, “The supposed synchronal flashing of fireflies,” Science 45 (1917), p. 44.].
Эти слова Филип Лорен опубликовал в журнале Science в далеком 1917 году, когда он присоединился к дискуссии об этом необъяснимом явлении. На протяжении трехсот лет западные путешественники, побывавшие в Юго-Восточной Азии, рассказывали легенды о колоссальных скоплениях на берегах рек светлячков (протяженность этих скоплений достигала нескольких миль), мерцающих в унисон[2 - Одно из первых упоминаний встречается в бортовом журнале экспедиции сэра Френсиса Дрейка в 1577 г.: «Наш генерал побывал на небольшом островке к югу от Целебеса (Целебес, ныне Сулавеси, – остров в Индонезии. – Прим. перев.), покрытом непроходимыми зарослями. Каждую ночь вся земля среди этих зарослей и сами заросли бывают усеяны огромным множеством насекомых (размером не больше обычной мухи), светящихся во тьме. Они испускают столь сильный свет, что каждый куст или дерево становятся похожи на пылающую свечу» [R. Hatduyt, 1589. A Selection of the Principal Voyages, Traffiques and Discoveries of the English Nation. Edited by Laurence Irving (New York; Knopf, 1926), p. 151]. Синхронный аспект этого свечения был описан гораздо подробнее в 1680 г. голландским физиком Энгельбертом Кемпфером после его путешествия по реке Мейнам, от Бангкока к морю: «Эти светящиеся насекомые, рассевшись на деревьях, создают впечатление огненного облака. Самым удивительным, однако, является то, что, рассевшись на ветвях дерева, они все вдруг одномоментно потухают, а спустя секунду-другую, так же дружно зажигаются. И такие дружные и ритмичные мерцания могут длиться часами, словно мы наблюдаем бесконечное чередование систолы и диастолы». [Engeibert Kaempfer, 1727. The History of Japan (With a Description of the Kingdom of Siam). Translated by J. G. Scheuchzer. London: Hans Sloane. Два тома в одном. См. том 1, p. 45, или pp. 78–79 тома 1 повторного издания от 1906 г., выполненного издательством J. McLehose and Sons, Glasgow.]]. Эти истории о синхронно мерцающих светлячках, зачастую изложенные в весьма романтическом стиле, характерном для авторов книг о путешествиях в дальние страны, вызывали скепсис у очень многих читателей. Возможно ли, чтобы тысячи светлячков координировали свое мерцание со столь высокой точностью и на столь обширном пространстве? Тогда Филип Лорен был уверен, что ему удалось разрешить эту загадку: причиной этого очевидного явления, по его мнению, были непроизвольные движения век наблюдателя, то есть их внезапное закрывание и открывание, а насекомые не имели к этому никакого отношения.
В период между 1915 и 1935 гг. журнал Science опубликовал еще 20 статей[3 - Многие из них цитируются в статье John B. Buck, “Synchronous rhythmic flashing of fireflies,” Quarterly Review of Biology 13 (1938), pp. 301–314. Эта статья является лучшим из справочников по ранней литературе, в которой освещается этот вопрос.], посвященных этой загадочной форме массового синхронизма. Кто-то из ученых трактовал это явление как случайное, мимолетное совпадение. Другие объясняли это необычными атмосферными условиями: сочетанием очень высокой влажности, абсолютного безветрия или темноты. Кто-то полагал, что тут не обошлось без некоего «дирижера»[4 - George H. Hudson, “Concerted flashing of fireflies,” Science 48 (1918), pp. 573–575.] – светлячка, который руководит действиями всех остальных своих собратьев. Как написал в 1918 г. Джордж Хадсон, «если необходимо, чтобы группа людей выполняла определенные действия, подчиняясь заданному ритму, то у этой группы людей не только должен быть лидер, но они должны быть обучены выполнять указания этого лидера… Можно ли поверить в то, что этим насекомым присуще более совершенное чувство ритма, чем наше собственное?» Натуралист Хью Смит, который жил в Таиланде с 1923 по 1934 гг. и многократно наблюдал это явление, с раздражением отмечал, что «некоторые из опубликованных объяснений производят большее впечатление, чем само описываемое явление»[5 - Hugh M. Smith, “Synchronous flashing of fireflies,” Science 82 (1935), pp. 151–152. В этой краткой, но заслуживающей доверия статье Смит также дает одно из самых подробных описаний данного явления: «Представьте себе дерево высотой от тридцати пяти до сорока футов, плотно покрытое маленькими овальными листьями, причем на каждом листе сидит по светлячку и все листья мерцают идеально в унисон с частотой примерно три раза за две секунды, а в промежутке между вспышками дерево пребывает в полной темноте. Представьте себе берег реки протяженностью около десятой доли мили, густо поросший мангровым лесом. На каждом листке каждого дерева в этом лесу строго синхронно зажигаются и гаснут светлячки. Насекомые на деревьях, растущих на дальнем конце этого леса, мерцают идеально в унисон со светлячками, усеявшими ближние к вам деревья. Если у вас богатое воображение, то вы можете составить некоторое представление об этом восхитительном и завораживающем зрелище».]. Однако и он признал, что не в состоянии предложить какую-либо более убедительную версию.
В течение нескольких десятилетий никто не мог сформулировать достаточно правдоподобную теорию, которая проливала бы свет на это загадочное явление. Лишь в 1961 г. Джой Адамсон в продолжении своей повести Born Free («Рожденная свободной») удивлялась тому же явлению, которое она наблюдала на африканском континенте[6 - Joy Adamson, Living Free (London: Collins and Harvill, 1961). Цитата со стр. 29.] (кстати, ее описание синхронного мерцания светлячков на африканском континенте является первым).
…полоса света шириною около десяти футов, образованная тысячами тысяч светлячков, зеленое фосфоресцирующее свечение которых создает восхитительный по красоте покров на высокой, по пояс, траве… Флуоресцирующая полоса, созданная этими крошечными организмами, раз за разом вспыхивает и погасает с поразительной по своей точности синхронностью. Остается лишь удивляться, какими средствами коммуникации должны обладать эти крошечные существа, чтобы они могли координировать свое мерцание так, словно ими управляет некое механическое устройство.
К концу 1960-х годов из отдельных фрагментов этого пазла начала вырисовываться некая картина. Одна из подсказок была столь очевидной,
что почти никто не обратил на нее внимания. Синхронные светлячки мерцали не только в унисон – они мерцали в определенном ритме, в постоянном темпе. Даже когда они были изолированы друг от друга, они продолжали мерцать синхронно. Из этого следует, что каждое насекомое должно располагать своим собственным средством определения хода времени, своего рода внутренним часовым механизмом. Этот гипотетический осциллятор до сих пор не определен анатомически, но почти наверняка он должен представлять собою некий кластер нейронов, находящийся где-то в крошечном мозге насекомого. Во многом подобный естественному задатчику ритма в сердце человека, этот осциллятор действует на определенной частоте, вырабатывая электрические сигналы ритма, которые поступают на светоэлемент светлячка[7 - Дополнительную информацию о биохимических процессах, обусловливающих ритм мерцания, можно почерпнуть в статье Barry A. Trimmer et al., “Nitric oxide and the control of firefly flashing,” Science 292 (2001), pp. 2486–2488.] и приводят к его периодическому срабатыванию («включению»).
Вторая подсказка содержится в работе биолога Джона Бака, который сделал больше, чем кто-либо другой, чтобы обеспечить научную достоверность исследований, пытающихся объяснить синхронизм действий светлячков. В середине 1960-х годов Джон Бак вместе со своей женой Элизабет впервые отправился в Таиланд в надежде увидеть собственными глазами это загадочное явление. В ходе неформального, но весьма полезного эксперимента супруги выловили на берегах рек в окрестностях Бангкока множество светлячков и выпустили их в своем гостиничном номере, предварительно затемнив его[8 - John Buck and Elisabeth Buck, “Mechanism of rhythmic synchronous flashing of fireflies,” Science 159 (1968), pp. 1319–1327.]. Насекомые повели себя весьма нервно, но затем постепенно распространились по стенам и потолку, находясь друг от друга на расстоянии не менее 10 сантиметров. Поначалу они мерцали вразнобой. Вскоре супруги Бак, в молчаливом удивлении наблюдавшие за светлячками, заметили, что сперва пары, а затем и тройки светлячков начали мерцать в унисон. Группы синхронно мерцающих светлячков становились все больше и больше.
Из этих наблюдений следовало, что светлячки должны как-то «настраивать» свои ритмы в ответ на мерцания других светлячков. Чтобы непосредственно протестировать эту гипотезу, Бак и его коллеги провели впоследствии лабораторные исследования[9 - Frank E. Hanson, James F. Case, Elisabeth Buck, and John Buck, “Synchrony and flash entrainment in a New Guinea firefly,” Science 174 (1971), pp. 161–164. Популярное изложение этой и других связанных с ней работ можно найти в статье John Buck and Elisabeth Buck, “Synchronous fireflies,” Scientific American 234 (May 1976), pp. 74–85.], в ходе которых они создавали для светлячка мерцание искусственным светом (имитируя таким образом свечение другого светлячка) и наблюдали за его реакцией. Они обнаружили, что отдельно взятый светлячок корректирует моменты своих последующих мерцаний вполне определенным, предсказуемым образом и что величина и направление такой коррекции зависит от того, в какой момент цикла было воспринято внешнее воздействие. У некоторых видов светлячков внешнее воздействие всегда смещало ритм подопытного светлячка несколько вперед, словно переводя стрелки его внутренних часов вперед, тогда как у других видов светлячков внешнее воздействие смещало ритм подопытного светлячка либо несколько вперед, либо несколько назад в зависимости от того, насколько подопытный светлячок был близок к тому, чтобы мигнуть (одно дело, если светлячок был буквально на грани очередного мигания, и другое – если он был лишь на полпути к очередному миганию).
Взятые вместе, эти две подсказки предполагали, что ритм мерцания регулируется внутренним, перенастраиваемым осциллятором[10 - Идея перенастраиваемого осциллятора подробно обсуждается в статье John Buck, “Synchronous rhythmic flashing of fireflies. II,” Quarterly Revtew of Biology 63 (1988), pp. 265–289, которая появилась в том же журнале и под таким же названием ровно через 50 лет после того, как был опубликован его первый обзор литературы по данному вопросу. Этот второй обзор по-прежнему представляет собой исчерпывающую подборку всего, что известно науке о синхронизации светлячков.]. А это непосредственно указывало на возможное существование некого механизма синхронизации: каждый из членов сообщества мерцающих светлячков непрерывно посылает и принимает сигналы, смещая ритмы других светлячков и смещая собственный ритм в результате воздействия с их стороны. Из всей совокупности таких взаимовлияний каким-то образом спонтанно возникает синхронизм.
Таким образом, мы приходим к объяснению, которое казалось немыслимым лишь несколько десятков лет тому назад: светлячки организуют сами себя. Им не нужен дирижер, и погода не имеет значения для них. Синхронизм возникает за счет взаимообмена сигналами – точно так же, как участники оркестра могут добиться идеальной синхронности своих действий без помощи дирижера. Правда, в случае светлячков исследователей ставит в тупик то обстоятельство, что для обеспечения синхронизма этим насекомым не требуется интеллект. Они располагают всеми необходимыми для этого ингредиентами: у каждого светлячка имеется осциллятор, что-то наподобие маленького метронома, моменты выработки сигналов которым корректируются автоматически в ответ на мерцания других светлячков. Вот, собственно, и все.
За одним исключением: отнюдь не очевидно, что этот сценарий работоспособен. Может ли идеальный синхронизм возникнуть из какофонии многих тысяч лишенных разума метрономов? В 1989 г. я вместе со своим коллегой Ренни Миролло доказали правильность такого ответа. Описанный сценарий не только работоспособен – он обязательно будет работоспособен при определенных условиях.
По причинам, которые нам непонятны до сих пор, тенденция к синхронизму является одной из самых распространенных движущих сил во Вселенной[11 - С превосходным современным обзором научной и математической литературы по синхронизации можно ознакомиться в книге Arkady Pikovsky, Michael Rosenblum, and Jurgen Kurths, Synchronization: A Universal Concept in Nonlinear Science (Cambridge, England: Cambridge University Press, 2002).], охватывая практически все уровни, начиная с атомов и заканчивая животными, начиная с людей и заканчивая планетами. Женщины, которые дружат между собой, или сотрудницы, проводящие много времени вместе, нередко обнаруживают, что их менструальные циклы постепенно сближаются и начинаются примерно в один и тот же день. Сперматозоиды, двигающиеся бок о бок на своем пути к яйцеклетке[12 - Одно из первый упоминаний о синхронных движениях сперматозоидов на их пути к яйцеклетке появляется в книге James Gray, Ciliary Movement (New York: Macmillan, 1928); см. так же рис. 78 на стр. 119. См. также G.I. Taylor, “Analysis of the swimming of microscopic organisms,” Proceedings of the Royal Society of London, Senes A209 (1951), pp. 447–461. Самой последней работой, в которой объясняется, как возникает синхронизм посредством механических сил, передаваемых через жидкость, является статья S. Gueron and K. Levit-Gurevich, “Computation of the internal forces in cilia: Application to ciliary motion, the effects of viscosity, and cilia interactions,” Biophysical Journal 74 (1998), pp. 1658–1676.], машут своими «хвостиками» в унисон, демонстрируя что-то похожее на простейшие элементы синхронного плавания. Иногда синхронизм принимает разрушительный характер: эпилепсия вызывается патологическим синхронным разрядом миллионов клеток мозга, что приводит к
ритмичным конвульсиям, вызывающим хватательные движения. Синхронизм может возникать даже в неживой природе. Поразительная когерентность лазерного луча обеспечивается синхронной пульсацией триллионов атомов, которые испускают фотоны одной и той же фазы и частоты. На протяжении многих тысячелетий Луна под воздействием Земли постепенно замедляла вращение вокруг собственной оси. Хотя Луна вращается вокруг собственной оси, она всегда обращена к Земле одной и той же стороной (ее темную сторону мы не видим никогда), так как обращение Луны вокруг Земли и вращение Луны вокруг собственной оси синхронизировано: фактически Луна, облетая Землю каждые двадцать семь с половиной дней, совершает также одно полное вращение вокруг собственной оси против часовой стрелки.
На первый взгляд, эти явления могут показаться не связанными между собой. В конце концов, силы, которые синхронизируют клетки головного мозга никак не связаны с силами, которые обеспечивают синхронизм атомов лазера. Однако при более близком рассмотрении можно обнаружить связь, которая охватывает собою детали любого конкретного механизма. Этой связью является математика. Все приведенные выше примеры представляют собой вариации одной и той же математической темы: самоорганизации, спонтанного возникновения порядка из хаоса. Изучая простые модели поведения светлячков и других самоорганизующихся систем, ученые начинают раскрывать тайны этой восхитительной разновидности порядка во Вселенной.
Исследовавшийся мною и Ренни вопрос о самоорганизации был поначалу сформулирован Чарли Пескином, специалистом по прикладной математике, сотрудником Института Куранта (Courant Institute) при Нью-Йоркском университете. Человек с тихим и спокойным голосом, с аккуратно подстриженной бородкой и с неизменно приветливой улыбкой, Чарли Пескин является одним из самых выдающихся математиков с уклоном в биологию. Разгадывая тайны физиологии (например, как молекулы, ткани и органы человеческого тела справляются со своими сложными функциями), он предпочитает пользоваться компьютерами и математикой. Какие бы проблемы он ни пытался решать – как сетчатке человеческого глаза удается обнаружить даже самый слабый свет или как молекулярные «двигатели» вырабатывают силу в мышцах, – его «фирменным знаком» является разносторонность научных интересов. Создается впечатление, что он хочет попробовать себя во всех областях знания и исследовать все тайны природы. Если необходимого ему математического аппарата еще не существует, он обязательно должен изобрести такой аппарат. Если для решения рассматриваемой им проблемы требуется суперкомпьютер, Пескин разработает для него соответствующую программу. Если существующие процедуры работают слишком медленно, он придумает более быстрые процедуры.
Даже его математический стиль отличается высокой гибкостью и прагматизмом. Его самая известная работа связана с разработкой трехмерной модели тока крови в камерах сердца, качающего кровь. Эта модель отличается реалистичностью анатомии, сердечных клапанов и строения волокон. Для решения столь сложной задачи он использовал грубую мощь суперкомпьютерного моделирования в сочетании с изысканностью абсолютно оригинальной вычислительной схемы. Что же касается решения других проблем, Пескин обычно придерживается известной максимы Эйнштейна, согласно которой все нужно делать по возможности проще – но не проще необходимого. В таких случаях Пескин отдавал предпочтение минималистскому подходу, пренебрегая всеми биологическими подробностями, за исключением лишь самого важного. Именно в таком минималистском духе Пескин предложил схематическую модель того, как клетки, задающие ритм работы сердца, могли бы синхронизировать сами себя[13 - Charles S. Peskin, Mathematical Aspects of Heart Physiology (New York: Courant Institute of Mathematical Sciences Publication, 1975), pp. 268–278. В настоящее время кардиологи по-другому смотрят на то, как синхронизируются клетки-задатчики ритма. Правомерность модели Пескина доказывалась на основании предположения о том, что химическую связь между клетками-задатчиками ритма обеспечивают синапсы, тогда как в наши дни принято считать, что клетки-задатчики ритма связаны между собой электрически через нексусы (щелевые контакты), которые действуют подобно резисторам. Как таковые, клетки-задатчики ритма пребывают в постоянной электрической связи между собой и взаимодействуют в течение всего своего цикла активности, а не только в момент активизации, как предполагал Пескин. Описание более современной модели можно найти в статье D. C. Michaels, E. P. Matyas, and J. Jalife, “Mechanisms of sinoatrial pacemaker synchronization: A new hypothesis,” Circulation Research 61 (1987), pp. 704–714.].
Натуральный задатчик ритма работы сердца представляет собой подлинное чудо эволюции – возможно, самый впечатляющий осциллятор из когда-либо созданных природой. Кластер, состоящий из примерно 10 тысяч клеток и называемый синусно-предсердным узлом, вырабатывает электрические импульсы, которые задают ритм работы сердца в целом. Синусно-предсердный узел должен действовать чрезвычайно надежно, минута за минутой, обеспечивая примерно три миллиарда сокращений сердца за все время жизни человека. В отличие от большинства клеток сердца, клетки-ритмоводители вырабатывают электрические импульсы автоматически; если их изолировать в чашке Петри, то напряжение генерируемых ими импульсов ритмично повышается и снижается.
Все это вызывает законный вопрос: зачем нужно так много этих клеток, если даже одной клетки вполне достаточно для того, чтобы справиться с данной работой? Возможно, это объясняется тем, что наличие единственного задатчика ритма не позволяет получить достаточно надежную структуру: лидер может начать неправильно функционировать или даже прекратить существование. Вместо ненадежной структуры с единственным лидером природа выработала более надежную, «демократичную» систему, в которой тысячи клеток коллективно задают нужный ритм. Разумеется, такая демократия порождает собственные проблемы: клетки должны каким-то образом координировать свои действия; если же они будут посылать конфликтующие между собой сигналы, сердце выйдет из строя. Пескина интересовал следующий вопрос: как всем этим клеткам удается – в отсутствие лидера или каких-либо команд со стороны – действовать столь синхронно?
Обратите внимание, как похож этот вопрос на поставленный выше вопрос о светлячках. В том и другом случае речь идет о больших популяциях ритмичных объектов, вырабатывающих внезапные импульсы, которые задают ритмы для других членов группы, убыстряя или замедляя их в соответствии с определенными правилами. В обоих случаях синхронизм представляется неизбежным. Задача заключается в том, чтобы объяснить, почему это должно быть именно так, а не иначе.
В 1975 г. Пескин изучил этот вопрос в рамках некой упрощенной модели. Каждая из клеток-ритмоводителей рассматривается как электрическая цепь, генерирующая импульсы (осциллятор) и эквивалентная конденсатору, подключенному параллельно резистору. (Конденсатор – это прибор, способный накапливать и хранить электрический заряд; в данном случае он играет роль, подобную той, которую играет мембрана клетки; резистор
обеспечивает путь для вытекания электрического тока из клетки, аналогично так называемым каналам утечки в мембране.) Постоянный входной ток заставляет конденсатор заряжаться, что приводит к росту напряжения на нем. Когда напряжение на конденсаторе повышается, величина тока, стекающего через резистор, растет, в результате чего скорость повышения замедляется. Когда напряжение достигает некого порога, конденсатор разряжается и напряжение на нем мгновенно падает до нуля; такая модель имитирует запуск клетки-ритмоводителя и ее последующее возвращение к исходному состоянию. Затем напряжение снова начинает повышаться, и описанный выше цикл повторяется. Рассматриваемый как функция времени, такой цикл напряжения состоит из двух частей: плавный подъем вдоль кривой заряда (график в виде половины дуги, поднимающейся, но с постепенным замедлением роста), за которым следует практически вертикальное падение с возвратом к исходному состоянию.
Затем Пескин представил такой задатчик ритма сердца в виде огромной совокупности этих математических осцилляторов. Для простоты он предположил, что все осцилляторы идентичны (и, таким образом, характеризуются одной и той же кривой заряда), что каждый осциллятор связан в одинаковой степени со всеми остальными осцилляторами и что осцилляторы влияют друг на друга только в состоянии запуска. В частности, когда какой-либо осциллятор запускается, он мгновенно повышает напряжения всех остальных осцилляторов на некую фиксированную величину. Если напряжение какой-либо клетки превышает пороговое значение, она сразу же запускается.
Сложность и запутанность этой проблемы обусловлена тем, что в любой данный момент времени разные осцилляторы, как правило, пребывают на разных стадиях рассматриваемого нами цикла: некоторые из них находятся буквально на грани запуска, другие уже успели далеко продвинуться по кривой заряда, тогда как третьи могут приближаться к исходному состоянию. Как только ведущий осциллятор достигнет порогового значения, он запускается и проталкивает каждый из остальных осцилляторов в разные позиции вдоль кривой заряда. Результаты такого запуска имеют разноплановый характер: осцилляторы, которые были близки к пороговому значению, проталкиваются ближе к запускающемуся осциллятору, но те, которые приближаются к исходному состоянию, выбиваются из фазы. Иными словами, отдельно взятый запуск оказывает синхронизирующее воздействие на некоторые осцилляторы и рассинхронизирующее воздействие на другие осцилляторы. Долгосрочные последствия всех этих перестроек невозможно уяснить, опираясь лишь на здравый смысл.
Чтобы получить более наглядную картину происходящего, представьте отдельно взятую клетку в виде бачка унитаза, наполняющегося водой. Когда вода поступает в бачок, ее уровень постепенно повышается, подобно напряжению в клетке. Допустим, что когда вода в бачке достигнет определенного уровня, произойдет автоматический слив воды из бачка. Быстрый слив воды вернет ее уровень к исходному (условно нулевому), после чего бачок начнет снова наполняться; возникнет своего рода спонтанный осциллятор. (Чтобы довершить аналогию, нам также нужно предположить, что бачок слегка протекает. Вода вытекает через небольшую дырочку у дна бачка. Вода просачивается быстрее, когда уровень воды в бачке выше, из чего следует, что бачок наполняется все медленнее по мере повышения уровня воды в нем. Наличие этой утечки не имеет особого значения для самой осцилляции – это устройство будет циклически наполняться и опустошаться даже в отсутствие утечки, – но оно оказывается критически необходимым для синхронизации многих таких осцилляторов.) Наконец, представьте целое полчище из 10 тысяч таких осциллирующих туалетных бачков, соединенных между собой системой труб по принципу «каждый с каждым» таким образом, что когда происходит слив какого-либо из них, это приводит к одинаковому подъему уровня воды во всех остальных бачках. Если эта дополнительная вода поднимает уровень воды в каких-либо из этих бачков выше его порогового значения, то вода сливается и из этих бачков.
В связи с этим возникает следующий вопрос: как поведет себя такое хитросплетение бачков? Будут ли эти бачки наполняться и сливаться хаотически, когда каждому из них заблагорассудится? Распадется ли их сообщество на отдельные группировки, конкурирующие между собой? Может быть, они будут наполняться и сливаться по очереди, друг за другом?
Пескин предположил, что такая система всегда будет входить в синхронизм: какой бы ни была начальная ситуация в такой системе, в конечном счете все осцилляторы будут запускаться в унисон. Кроме того, он предположил, что синхронизм наступит, даже если эти осцилляторы будут не вполне идентичны. Но когда Пескин попытался доказать свои предположения, он столкнулся с определенными техническими препятствиями. В частности, отсутствовали надежные математические процедуры, которые позволяли бы описывать большие системы осцилляторов, обменивающихся между собой внезапными, дискретными импульсами. Поэтому он отказался от своего первоначального замысла и сосредоточился на простейшем возможном случае: двух идентичных осцилляторах. Однако даже в этом случае математические проблемы казались чересчур сложными. Пескин попытался еще больше упростить задачу, допустив возможность лишь бесконечно малых толчков и бесконечно малых утечек через резистор. После таких упрощений задача поддавалась решению: для этого специального случая Пескин доказал неизбежность синхронизма.
Доказательство, предложенное им, базируется на идее, сформулированной французским математиком Анри Пуанкаре, основателем теории хаоса. Концепция Пуанкаре представляет собой математический эквивалент стробофотографии. Возьмем два идентичных осциллятора, A и B, и представим в графическом виде их работу, делая фотоснимок каждый раз, когда запускается осциллятор A. Как будет выглядеть соответствующая последовательность фотоснимков? Осциллятор A лишь запустился, поэтому он выглядит так, как будто все время находится в исходном положении (нулевом напряжении). Напряжение осциллятора B, напротив, меняется от одного снимка к следующему. Решая уравнения, описывающие такую модель, Пескин нашел исчерпывающую, но весьма «навороченную» формулу, описывающую изменения напряжения осциллятора B в промежутках между фотоснимками. Эта формула показала, что в случае, когда это напряжение оказывается меньше определенного критического значения, оно будет неуклонно снижаться, пока не достигнет нуля, тогда как в случае, когда это напряжение оказывается больше критического значения, оно будет неуклонно повышаться, пока не достигнет порогового значения. В любом случае осциллятор B в конечном счете синхронизируется с A. Есть лишь одно исключение: если напряжение осциллятора B в точности равно критическому значению напряжения, его невозможно изменить ни в сторону увеличения, ни в сторону уменьшения, поэтому оно остается в равновесном критическом значении. Осцилляторы A и B запускаются повторно, однако этот запуск происходит несинфазно, а с разницей во времени, составляющей половину цикла. Но это
равновесие оказывается неустойчивым: малейший толчок смещает систему в направлении синхронизма.
Несмотря на успешный анализ такого двухосцилляторного случая, выполненный Пескином, случай произвольного количества осцилляторов ждал соответствующего доказательства целых 15 лет. На протяжении этих 15 лет о результатах, полученных Пескином, почти никто не вспоминал. Сведения об этих результатах были похоронены в какой-то заумной монографии, которая, по сути, представляла собой фотокопию конспекта его лекций и которую можно было получить из его отдела лишь по специальному запросу.
Однажды, в 1989 г., я листал книгу под названием The Geometry of Biological Time («Геометрия биологического времени»), написанную биологом-теоретиком Артом Уинфри, одним из героев моей нынешней книги[14 - Arthur T. Winfree, The Geometry of Biological Time (New York: Springer-Verfag, 1980). Указанную цитату о работе Пескина можно найти на стр. 119. Недавно Уинфри внес в свой шедевр ряд исправлений и дополнений (второе издание этой книги было опубликовано в 2001 г.), использовав формат, до которого мог додуматься только он. Цель применения этого формата заключалась в том, чтобы подчеркнуть все превратности научного прогресса. Вместо того чтобы воспользоваться хорошо известными преимуществами рассуждения «задним числом», то есть спустя 20 лет после выхода первого издания, и исправить ошибки, вкравшиеся в текст первого издания, а также убрать свои собственные ложные предположения и прогнозы, он оставил оригинальный текст неизменным и поместил новый материал в рамки, внутренняя область которых залита серым фоном, подробно комментируя те из своих старых идей, которые нуждаются в корректировке или в дополнительном разъяснении (и во многих случаях демонстрируя, насколько дальновидными оказались его выводы). Хотя временами такой формат затрудняет чтение книги, он подчеркивает, что наука представляет собой сложный, живой и развивающийся организм. (Этот эффект напомнил мне превосходную серию документальных фильмов Майкла Аптеда под общим названием “7 Up” («Спустя семь лет»). В этих фильмах у группы людей берут интервью через каждые 7 лет на протяжении всей их жизни, начиная с семилетнего возраста. Таким образом, зрителям предоставляется возможность наблюдать развитие человека на всех стадиях его жизни.)]. В то время я был научным сотрудником с ученой степенью, специализировавшимся на прикладной математике в Гарвардском университете, и пытался подобрать какую-либо интересную тему для своих дальнейших исследований. Хотя я размышлял над книгой Уинфри предыдущие восемь лет, она продолжала казаться мне неисчерпаемым источником идей и вдохновения. Она представляла собой не просто изложение результатов последних исследований по биологическим осцилляторам, а своего рода карту для охотников за удачей, руководство к будущим научным открытиям. Почти на каждой странице Уинфри указывал путь к интересным нерешенным проблемам и высказывал собственные соображения относительно того, какие из них в наибольшей степени созрели для того, чтобы за их решение можно было приняться прямо сейчас.
В этой книге я натолкнулся на вариант, которого не замечал прежде: в разделе, посвященном осцилляторам, взаимодействующим посредством ритмических импульсов, Уинфри упоминал о модели, описывающей поведение клеток-ритмоводителей сердца, предложенной Пескином в его монографии. Хотя Пескину удалось проанализировать лишь случай двух идентичных осцилляторов, писал Уинфри, «задача со многими осцилляторами еще ожидает своего решения».
Это разожгло мое любопытство. Что же представляет собой эта фундаментальная загадка, которая все еще ожидает своего решения? Я никогда прежде не слышал о работах Пескина, но указанная им проблема произвела на меня сильное впечатление. Никто даже еще не пытался придумать математический аппарат, который описывал бы большую популяцию из «импульсно-связанных» осцилляторов, взаимодействие в которой осуществляется посредством кратковременных пульсирующих сигналов. Это было ощутимым пробелом в литературе по математической биологии – и к тому же весьма подозрительным пробелом, если принять во внимание широкую распространенность в природе именно такого способа взаимодействия между биологическими осцилляторами. Светлячки мерцают. Сверчки стрекочут. Нейроны посылают электрические сигналы. Все они используют внезапные импульсы для общения друг с другом. Тем не менее, теоретики уклонялись от изучения такой импульсной связи по причине отсутствия подходящего математического аппарата. Импульсы вызывают постоянные скачки переменных, однако у математики возникают большие проблемы при описании таких скачков – математика предпочитает иметь дело с процессами, которые изменяются плавно. Однако Пескину удалось каким-то образом проанализировать два осциллятора, которые периодически воздействуют друг на друга кратковременными импульсами. Каким образом это удалось ему? И что помешало ему перейти от системы с двумя идентичными осцилляторами к системам со многими осцилляторами?
В нашей библиотеке не оказалось экземпляра монографии Пескина, однако Пескин любезно согласился переслать мне соответствующие страницы из этой монографии. Его анализ показался мне весьма элегантным и понятным. Но я быстро понял, почему он ограничился системой лишь с двумя идентичными осцилляторами: несмотря на всю элегантность выполненного им анализа, его формулы оказались чересчур громоздкими. С тремя осцилляторами дело обстояло еще хуже, а система из произвольного количества (n) осцилляторов представлялась вообще неподъемной. Я не понимал, как можно распространить его модель на большое количество осцилляторов и обойти возникающие осложнения.
Чтобы получить более полное представление об этой проблеме, я попытался решить ее на компьютере двумя разными способами. Первый подход заключался в постепенном наращивании сложности системы: я пробовал, подражая стратегии Пескина, найти решение для системы с тремя осцилляторами, используя малые толчки и утечки и перекладывая на компьютер решение всех алгебраических вопросов. Формулы оказались просто устрашающими – некоторые из них простирались на несколько страниц, – но с помощью компьютера мне удалось сократить их до вполне приемлемого вида. Полученные мною результаты показали, что предположение Пескина является, по-видимому, правильным для системы с тремя осцилляторами. Однако эти результаты также говорили о необходимости найти какой-то другой способ решения данной проблемы. С ростом количества осцилляторов используемый мною математический аппарат оказывался неприемлемым.
Второй подход заключался в компьютерном моделировании. Попытаемся на данном этапе обойтись без формул и предоставим возможность компьютеру продвигать систему во времени шаг за шагом вперед, а затем посмотрим, что из этого получится. Компьютерное моделирование ни в коей мере не заменяет собою математический аппарат – оно никогда не позволит получить доказательство, – но если гипотеза Пескина ложна, то такой подход сэкономит массу времени, убедив меня в необходимости поиска других путей решения проблемы. Такой подход чрезвычайно ценен в
математике. Когда вы пытаетесь доказать что-либо, желательно быть уверенным в том, что вы не пытаетесь доказать нечто изначально ложное. Такая уверенность придаст вам силы, которые понадобятся вам для поиска строгого доказательства.
Разработать компьютерную программу для моего случая оказалось сравнительно простым делом. Когда запускается один осциллятор, он подталкивает все остальные осцилляторы на определенную, фиксированную величину. Если какие-либо из «продвинутых» таким образом осцилляторов преодолеют определенный порог, предоставляем им возможность также запуститься – и соответствующим образом обновляем другие осцилляторы. В противном случае используем в промежутках между запусками формулы Пескина для подталкивания соответствующих осцилляторов в направлении их порогов.
Я испытал этот механизм на популяции из 100 идентичных осцилляторов. Изначально был создан случайный разброс их напряжений между базовым (нулевым) уровнем и порогом. Я отобразил этот разброс на диаграмме в виде совокупности точек, взбирающихся в направлении порога по общей для них кривой заряда, которая представляет собой зависимость напряжения от времени. Даже с помощью средств компьютерной графики мне не удалось выявить какой-либо определенной картины в их коллективном движении – полная путаница.
В данном случае проблемой оказался слишком большой объем информации. И здесь я оценил по достоинству еще одно преимущество метода стробов, предложенного Пескином: этот метод не только позволяет упростить анализ, но и представляет собой наилучший способ визуализации поведения системы. Все осцилляторы остаются невидимыми за исключением именно тех моментов, когда запускается какой-то конкретный осциллятор. В такие моменты свет воображаемого строба подсвечивает остальные осцилляторы, показывая их мгновенные напряжения. Затем вся эта система вновь погружается в темноту до наступления следующего момента, когда запускается определенный осциллятор. Модель Пескина обладает тем свойством, что осцилляторы запускаются по очереди – никто и никогда не нарушает эту очередь; таким образом, 99 других осцилляторов запускаются в темноте, до того как произойдет вспышка следующего строба.
Отображаемые на компьютере, эти вычисления мелькали так быстро, что изображение на экране буквально мельтешило: 99 осцилляторов быстро взбирались вдоль кривой заряда, изменяя свои позиции с каждой очередной вспышкой строба. Теперь полученная картина не вызывала сомнений. Точки собирались в группы, образуя маленькие пакеты синхронизма, которые объединялись в более крупные пакеты, подобно каплям дождя, которые собираются в ручейки, стекающие по оконному стеклу.
Это казалось просто сверхъестественным – система синхронизировала сама себя. Бросая вызов Филипу Лорену и всем прочим скептикам, которые утверждали, что синхронизация светлячков невозможна в принципе и что такое явление «противоречило бы всем законам природы», компьютер демонстрировал, что большая совокупность маленьких осцилляторов, не обладающих разумом, способна достигать синхронизма автоматически. Наблюдая за этим явлением, я испытывал чувство, близкое к мистическому ужасу. Наблюдатель поневоле испытывал ощущение, что осцилляторы словно договариваются между собой о совместных действиях, сознательно стремясь к порядку, хотя ни о чем подобном, разумеется, не могло быть и речи. Каждый из них лишь автоматически реагировал на импульсы, посылаемые другими осцилляторами, не преследуя при этом никакой конкретной цели.
Чтобы убедиться в том, что картина, увиденная мною с первой попытки, не была чистой случайностью, я повторял моделирование десятки раз, каждый раз при других произвольно выбранных начальных условиях и для других количеств осцилляторов – и каждый раз я наблюдал тенденцию к синхронизации. Похоже, Пескин пришел к правильному выводу. Теперь моя задача заключалась в том, чтобы получить строгое математическое доказательство. Только «железное» математическое доказательство продемонстрировало бы – причем так, как не мог бы сделать ни один компьютер в мире – неизбежность синхронизма, а еще лучше, если бы такое доказательство показало, почему именно наступление синхронизма неизбежно. Я обратился за помощью к своему другу Ренни Миролло, специалисту по математике, работающему в Бостонском колледже.
К тому времени я был знаком с Ренни Миролло уже около десяти лет. Будучи студентами-выпускниками Гарвардского университета, мы вместе отдыхали по выходным дням, вместе обедали по будням, уделяя в своих беседах примерно равное количество времени математике и женщинам. Но в те дни нам не приходилось работать вместе. По своему образованию Ренни Миролло был «чистым» математиком, тогда как я специализировался в прикладной математике. По этой причине мы понимали друг друга – но не всегда и не во всем.
Для своей докторской диссертации Ренни выбрал очень абстрактную тему. Интуиция подсказывала ему правильность некой теоремы – проблема заключалась лишь в том, чтобы найти доказательство этой теоремы. Ренни потратил три года на поиск доказательства и в конце концов понял, что доказать ее невозможно: он нашел контрпример, опровергающий эту теорему. Таким образом, три года жизни были потрачены зря. Однако этот отрицательный результат не поверг Ренни в отчаяние – он решил переключиться на какое-нибудь новое направление математики, решить какую-либо из ключевых проблем этого направления и написать диссертацию. На все это Ренни решил отвести себе один год.
Моя совместная работа с Ренни началась примерно в 1987 г. В этой совместной работе мы как бы дополняли друг друга. Обычно я предлагал ему какую-либо задачу, разъяснял ее научный контекст, выполнял компьютерное моделирование и предлагал интуитивные аргументы. Ренни придумывал стратегии, позволяющие прояснить проблему, а затем находил способы доказательства соответствующей теоремы.
Когда я рассказал Ренни о своих компьютерных экспериментах с моделью Пескина, поначалу он проявил, скажем так, спокойный интерес к этой проблеме. Однако после того как он разобрался в ней глубже, его начало разбирать нетерпение: в то время он напоминал мне боксера, готовящегося выйти на ринг. Он предоставил мне совсем немного времени, чтобы подытожить выполненную мною работу, но уже вскоре начал настаивать на том, что будет использовать свой собственный подход к решению этой проблемы.
Ренни безжалостно упростил мою модель. Его не заботили подробности, предусмотренные в исходной модели цепи, которую предложил Пескин – со всеми ее конденсаторами, резисторами и напряжениями. Единственной важной чертой этой модели, по мнению Ренни, является то, что каждый осциллятор следует кривой напряжения с замедлением роста в верхней ее части – по мере приближения к пороговому значению. Таким образом, он с самого начала заложил именно такую геометрию. Он отказался от схемы электрической цепи, которую предложил Пескин, заменив ее некой абстрактной переменной, изменяющейся по тому же закону, что и напряжение осциллятора: периодический подъем до порогового значения, запуск, сброс. Затем его воображение нарисовало
совокупность из n таких переменных, идентичных друг другу и взаимодействующих между собой по описанному выше принципу: когда один осциллятор запускается, он «подтягивает» все остальные осцилляторы на некую фиксированную величину или до порогового значения (если оно будет достигнуто раньше).
Эта усеченная модель не только оказалась значительно проще первоначальной (что сильно упрощало математические выкладки), но и допускала более широкую область применения. Вместо чисто электрической интерпретации в терминах напряжения мы могли теперь рассматривать такую переменную как меру готовности любого из осцилляторов к запуску, будь то клетка сердца или сверчок, нейрон или светлячок.
Нам удалось доказать, что такая обобщенная система почти всегда становится синхронизированной – при любом количестве осцилляторов и при любых начальных условиях[15 - Renato E. Mirollo and Steven H. Strogatz, “Synchronization of pulse-coupled biological oscillators,” SIAM (Society for Industrial and Applied Mathematics) Journal on Applied Mathematics 50 (1990), pp. 1645–1662.]. Ключевым ингредиентом в доказательстве является понятие «абсорбции» – обозначение идеи о том, что если один осциллятор проталкивает другой осциллятор за пороговое значение, они остаются синхронизированными навсегда, как если бы один осциллятор поглотил другой. Такие поглощения были заметны в моих компьютерных экспериментах, когда у наблюдателя складывалось впечатление, будто осцилляторы сливаются вместе, подобно каплям дождя, стекающим по оконному стеклу. Кроме того, такие слияния необратимы: как только два осциллятора запускаются вместе, они никогда не рассинхронизируются сами по себе, поскольку их динамика идентична; к тому же они одинаково связаны со всеми остальными осцилляторами, поэтому даже когда они испытывают толчок, их синхронизм не нарушается: ведь они испытывают одинаковый толчок. Следовательно, абсорбции действуют подобно храповому механизму, всегда приближая систему к синхронизму.
Основой доказательства является аргумент, демонстрирующий, что последовательность поглощений объединяет осцилляторы в группы, размеры которых все время увеличиваются – до тех пор, пока все они не образуют одну гигантскую совокупность. Если вы не математик, вас, наверное, интересует, как можно доказать все это. Существует бесконечно большое число способов запуска такой системы; как же в таком случае можно охватить одним доказательством все эти бесчисленные варианты? И где гарантия, что в конечном счете произойдет количество поглощений, достаточное для того, чтобы привести такую систему к полному синхронизму?
Ниже излагаются наши рассуждения по этому поводу. Не волнуйтесь, если какие-то детали этих рассуждений покажутся вам непонятными. Моя задача в данном случае заключается лишь в том, чтобы дать вам самое общее представление о том, как выстраиваются такие доказательства. Трудно рассчитывать на что-либо большее, если ваши познания в области математики ограничиваются курсом геометрии, который вы проходили в старших классах школы и который зачастую преподается в механистическом и авторитарном стиле. На самом деле конструирование математического доказательства – весьма творческий процесс, полный нечетких идей и образов, особенно на ранних стадиях этого процесса. Строгие формулировки появляются позже. (Если это не особенно интересует вас, можете пропустить следующие несколько страниц.)
Первым шагом является каталогизация всех возможных начальных конфигураций. Вернемся, например, к случаю двух осцилляторов. По причине использования Пескином уловки со стробами нам вовсе необязательно наблюдать за осцилляторами все время. Достаточно сосредоточиться на одном моменте в каждом цикле. В качестве такого момента мы выбрали момент непосредственно после запуска осциллятора A и его возвращения к исходному состоянию. Тогда на осцилляторе B может быть любое «напряжение» между исходным состоянием и порогом. Представляя напряжение на осцилляторе B в виде точки на числовой оси, исходное состояние на которой отображается нулем, а порог – единицей, мы видим, что существует линейный сегмент разных возможностей. Этот одномерный сегмент охватывает все возможные начальные условия для данной системы (поскольку нам известно, что осциллятор A находится в 0 [только что запустился и сбросился в исходное состояние], единственной переменной является B, который должен пребывать где-то вдоль линейного сегмента между 0 и 1).
Три осциллятора создают большее пространство возможностей. В этом случае нам нужно знать два числа: учитывая, что A только что запустился и находится в 0, нам все еще нужно указать напряжения осцилляторов B и C в этот момент. Как выглядит геометрия, соответствующая какой-то паре чисел? Мы можем представлять их как две координаты некой точки в двумерном пространстве.
Изобразим плоскость x, y, которая наверняка знакома вам из курса математики в старших классах. В данном случае ось x (как обычно, это горизонтальная ось) представляет напряжение осциллятора B в момент, когда запускается A. Вертикальная ось y представляет напряжение осциллятора C в тот же момент. Пара напряжений отображается на этой плоскости одной точкой.
Когда мы предоставляем возможность B и C изменяться независимо, принимая любые напряжения в промежутке между 0 и 1 (охватывая все возможные варианты), соответствующая точка, изображающая пару напряжений, движется внутри некой области, представляющей собой квадрат.
Таким образом, в случае трех осцилляторов мы получаем квадрат возможных начальных условий: одна ось для осциллятора B и одна для осциллятора C. Обратите внимание, что для A нам не нужна ось, поскольку этот осциллятор всегда стартует с нуля (в соответствии с тем, как мы решили стробировать эту систему).
Картина постепенно проясняется. По мере добавления осцилляторов нам необходимо добавлять все больше измерений, чтобы можно было учитывать все возможности. Для четырех осцилляторов требуется трехмерный куб начальных условий; для пяти осцилляторов требуется четырехмерный гиберкуб, а в общем случае для n осцилляторов требуется (n–1) – мерный гиберкуб. Людям, далеким от математики, это может показаться чересчур сложным (все это действительно сложно представить себе). Но с точки зрения формального математического подхода, вообще говоря, все равно, какому числу в каждом конкретном случае соответствует n: увеличение n не предполагает возникновения каких-либо новых сложностей. Поэтому, для большей определенности, в дальнейшем я продолжу рассматривать случай с тремя осцилляторами, который заключает в себе все основные идеи.
Очередной шаг заключается в преобразовании рассматриваемой нами динамики – эволюции такой системы во времени – в графическое представление, которое мы стремимся получить. Мы хотим убедиться в том, что в такой системе действительно будет достигнут синхронизм при неких начальных состояниях осцилляторов B и C.
Представим, что произойдет, если мы позволим такой системе начать работать. Напряжение на всех осцилляторах поднимется до порогового значения, они запустятся, а затем вернутся в исходное (нулевое) состояние; они также будут реагировать на «толчки» со стороны других осцилляторов. Чтобы
устранить избыточную информацию, опять воспользуемся методом стробов: предоставим системе возможность работать в темноте до очередного момента, когда осциллятор A запустится и вернется в исходное состояние, а B и C отреагируют на это. Затем включим строб и сделаем очередной фотоснимок, зафиксировав новые позиции B и C.
Геометрический результат заключается в том, что старая точка в нашем квадрате оказалась на новом месте (обновленные напряжения B и C). Иными словами, динамическая эволюция нашей системы эквивалентна преобразованию, в результате которого любая данная точка в нашем квадрате оказывается в другом месте этого квадрата в соответствии с неким сложным правилом, которое определяется формой кривой заряда и величиной толчков.
Этот процесс можно повторить; при этом новую точку можно интерпретировать как начальную, которая изменяет свою позицию в соответствии с упомянутым преобразованием, снова и снова перепрыгивая с одного места в нашем квадрате на другое место. Если такая система должна в конечном счете прийти к синхронизму, то упомянутая нами точка должна постепенно продвигаться в сторону нижнего левого угла квадрата, то есть к точке с напряжениями (0,0); это означает, что все осцилляторы достигнут исходного положения одновременно. (Почему именно нижний левый угол? Потому что именно в этой точке находится осциллятор A. Согласно определению строба, осциллятор A уже запустился и сбросился, поэтому напряжение на нем равно нулю. В синхронизированном состоянии напряжение на обоих других осцилляторах также равно нулю.)
В принципе, у каждой начальной точки есть некое конечное положение, которое можно вычислить. Если в конечном счете все осцилляторы запускались синхронно, то такую начальную точку мы называли «хорошей». В противном случае мы называли ее «плохой». Нам с Ренни не удалось найти способ, который позволял бы нам точно сказать, какие точки являются «хорошими», а какие – «плохими», однако нам удалось доказать, что почти все точки являются хорошими. Плохие точки действительно существуют, но они встречаются настолько редко и настолько сильно разбросаны, что если собрать их все вместе, то занимаемая ими площадь стремится к нулю. Иными словами, если выбрать какую-либо точку произвольным образом, то у вас чрезвычайно мало шансов выбрать плохую точку.
Это может показаться абсурдным: если плохие точки существуют, то вы можете полагать, что с вашим-то везением вы наверняка выберете плохую. Спешу вас успокоить: не выберете. Это практически то же самое, как если бы вы бросали дротик в мишень для игры в «дартс» в надежде, что он попадет точно в разделительную линию между двумя соседними концентрическими областями. Это чрезвычайно маловероятно. А теперь представьте, что толщина этой разделительной линии стремится к нулю (а именно это требуется, если ее площадь должна равняться нулю). Теперь, надеюсь, вы понимаете, почему у вас практически нет шансов попасть дротиком в эту линию.
Идея о теоретическом существовании «плохих» точек принадлежала Ренни, хотя мы, разумеется, были заинтересованы в «хороших» точках. Стратегия Ренни напоминала концепцию отрицательного пространства, к которой прибегают художники: чтобы лучше уяснить интересующий вас объект, постарайтесь уяснить пространство, окружающее этот объект. В частности, Ренни придумал, как доказать, что «плохие» точки занимают нулевую площадь.
Чтобы составить некоторое представление о его доказательстве, сосредоточимся на наихудших из «плохих» точек, которые я буду называть «ужасными». Эти точки – самые непокорные в своем стремлении воспрепятствовать достижению синхронизма: они вообще не поддаются поглощениям. Когда система начинает свою работу с какой-либо ужасной точки, никакая из пар осцилляторов (и тем более не вся популяция осцилляторов) не сможет синхронизироваться.
Чтобы понять, почему ужасные точки не могут занимать площадь больше нулевой, вообразите все эти точки в виде некой совокупности и проанализируйте, что произойдет, когда мы применим наше преобразование ко всем точкам в такой совокупности. Каждая ужасная точка перескочит в какое-то другое место, но после такого преобразования она все равно останется ужасной. Это звучит почти как тавтология: если какая-либо точка никогда не приводит к поглощению, то после одной итерации нашего преобразования она все равно никогда не приведет к поглощению. Следовательно, новая точка также является ужасной. Поскольку первоначальная совокупность включала все ужасные точки (по определению), эта новая точка должна была бы где-то здесь появиться, чтобы она могла исполнить роль начальной.
Наш вывод заключается в том, что преобразованная совокупность находится полностью внутри первоначальной совокупности. Могу предложить более наглядную аналогию: это похоже на хорошо известные вам фотографии «до» и «после», используемые в рекламе всевозможных диет для похудения. Преобразованная совокупность – похудевшая «после» – фотография – полностью содержится внутри толстой «до» – фотографии (как в рекламе диет для похудения).
До сих пор в нашем доказательстве не использовалась какая-либо информация о форме кривой заряда или величине «толчков». Когда мы в конечном счете учтем эти детали, мы придем к выводу, который, на первый взгляд, может показаться парадоксальным, хотя на самом деле он является решающим доводом в нашем доказательстве. Нам с Ренни удалось доказать, что преобразование из «до» в «после» действует подобно функции увеличения масштаба в фотокопировальном аппарате. Любая совокупность точек, которую вы подаете на вход нашего преобразования, на его выходе оказывается увеличенной в том смысле, что ее суммарная площадь оказывается умноженной на коэффициент, больший 1. Неважно, какую именно совокупность вы выберете (как неважно и то, какое изображение вы поместите в фотокопировальный аппарат): увеличится площадь всех совокупностей. В частности, увеличится площадь совокупности ужасных точек. Но погодите, это означает, что совокупность ужасных точек становится толще, а не тоньше. Но это, похоже, противоречит тому, о чем мы говорили выше. Если быть более точным, проблема в том, что преобразованная версия совокупности ужасных точек должна находиться внутри исходной совокупности при том, что ее площадь также должна увеличиться, что кажется невозможным. Единственным условием, при котором эти два вывода могут быть совместимы, является нулевая площадь исходной совокупности (фотография «до» должна представлять собой изображение тонкого прута). В таком случае никакого противоречия нет: при умножении на число, большее 1, площадь исходной совокупности останется нулевой, поэтому преобразованная совокупность может поместиться внутри исходной совокупности. Но это именно то, что мы хотели продемонстрировать: ужасные точки занимают нулевую площадь. Именно поэтому вам никогда не удастся выбрать их, если вы будете выбирать начальное условие случайным образом. Не сможете вы выбрать и какие-либо другие «плохие» точки. Именно поэтому наступление синхронизма в такой модели является неизбежным.
Та же аргументация относится к любому другому количеству осцилляторов – с
той небольшой поправкой, что в случае четырех или большего количества осцилляторов площадь нужно заменить на объем или гиперобъем. В любом случае вероятность начать процесс с плохой точки всегда остается равной нулю. Следовательно, Пескин был прав: в его модели идентичных импульсно-связанных осцилляторов каждый из осцилляторов в конечном счете запускается в унисон с остальными.
Конструируя это доказательство, мы пришли к выводу, что предположение Пескина об утечках было очень важным: в противном случае преобразование из «до» в «после» не расширяет площадь и все доказательство разваливается. Более того, оно должно развалиться, поскольку наша теорема без такого предположения недействительна. Если кривая заряда загибалась вверх, а не вниз – если напряжение растет все быстрее по мере приближения к пороговому значению, – то наше моделирование показывало, что рассматриваемая популяция осцилляторов вовсе не обязательно синхронизируется. Осцилляторы могут зациклиться в случайной картине хаотических запусков.
Этот тонкий момент зачастую ставил в тупик других математиков, когда я читал свои первые лекции по нашей работе: прежде чем я успевал дать развернутое пояснение этого момента, какой-нибудь критикан (а среди слушателей обязательно находился хотя бы один такой) прерывал меня и упрекал в тривиальности нашей теоремы: дескать, осцилляторы, конечно же, синхронизируются, поскольку все они идентичны и одинаково связаны друг с другом – а на какой же еще результат я рассчитывал? Но такое возражение слишком обманчиво: оно игнорирует слабое влияние кривой заряда. Синхронизм возникает с неизбежностью лишь в случае, когда эта кривая изгибается в «правильном» направлении. С биологической точки зрения, форма кривой заряда определяет, в какой момент толчки оказываются более сильными: в начале цикла (вблизи исходного состояния) или в конце цикла (вблизи порогового значения). Когда кривая заряда наклонена вниз, как в модели Пескина, данный толчок напряжения трансформируется в больший сдвиг фазы для осцилляторов, близких к пороговому значению, что в свою очередь гарантирует, что система будет синхронизирована, хотя понять, почему именно она будет синхронизирована, не так-то просто.
Сконструированное нами доказательство выводов, сделанных Пескином, оказалось первым строгим результатом, относящимся к популяции осцилляторов, обменивающихся внезапными импульсами. Что же касается реальных светлячков или клеток-ритмоводителей сердца, такая модель является очевидным упрощением. Она предполагает, что запуск одного осциллятора всегда подталкивает другие осцилляторы в направлении порога, продвигая таким образом их фазы вперед; реальные биологические осцилляторы могут, вообще говоря, сдвигать фазу как вперед (опережение), так и назад (запаздывание). Кроме того, тайские светлячки, которые являются самыми большими мастерами в части синхронизации – вид, известный как Pteroptyx malaccae, – используют совершенно другую стратегию[16 - Экспериментальные свидетельства разных стратегий перенастройки, используемых светлячками, изложены в статье Frank E. Hanson, “Comparative studies of firefly pacemakers,” Federation Proceedings 37 (1978), 2158–2164. Цель нашей математической модели никогда не заключалась в том, чтобы обеспечить большую реалистичность в этом отношении. Мы лишь хотели доказать правильность гипотезы Пескина и ссылались на светлячков как на самый наглядный пример этой абстракции, концепцию импульсно-связанных осцилляторов. Описание гораздо более достоверной с биологической точки зрения модели синхронизма светлячков можно найти в статье G. Bard Ermentrout, “An adaptive model for synchrony in the firefly Pteroptyx malaccae.” Journal of Mathematical Biology 29 (1991), pp. 571–585.]: они непрерывно корректируют частоту своих «внутренних часов», а не их фазу, в ответ на сторонние вспышки. По сути, они заставляют свои «внутренние часы» тикать быстрее или медленнее, вместо того чтобы переводить свою минутную стрелку немного вперед или назад. К тому же, предполагая, что все осцилляторы идентичны, наша модель не принимает во внимание генетическое разнообразие, присущее любой реальной популяции. И наконец, наше допущение, что все осцилляторы оказывают одинаковое воздействие друг на друга, является очень грубым описанием клеток сердца, которые влияют главным образом на своих ближайших соседей. Учитывая все эти ограничения нашего анализа, мы оказались не готовы к реакции, которую он должен был вызвать с неизбежностью.
В течение нескольких следующих лет было опубликовано более 100 статей, посвященных импульсно-связанным осцилляторам. Авторами этих статей были ученые, представлявшие множество дисциплин, начиная с нейробиологии и заканчивая геофизикой. Что касается нейробиологии, то теоретиков, изучающих модели нейронных сетей, категорически не устраивал преобладающий подход, согласно которому нейроны весьма грубо описывались средними скоростями их запуска (количеством скачков напряжения в секунду), а не фактическим распределением самих этих скачков во времени[17 - Одной из ранних работ, посвященных этому вопросу, была статья L. F. Abbott and C. van Vreeswijk, “Asynchronous states in neural networks of pulse-coupled oscillators,” Physical Review E 48 (1993), pp. 1483–1490.]. Предложенная нами новая модель импульсно-связанных осцилляторов идеально отвечала потребностям ученых-нейробиологов и духу времени в целом.
По случайному стечению обстоятельств или, может быть, в силу каких-то других причин в начале 1990-х годов ученые в других областях также размышляли над поведением систем такого рода. Например, влиятельный биофизик Джон Хопфилд, работающий в Калифорнийском технологическом институте, обнаружил связь между землетрясениями и импульсно-связанными нейронами[18 - John J. Hopfield, “Neurons, dynamics, and computation,” Physics Today 47 (1994), pp. 40–46; A. V. M. Herz and J. J. Hopfield, “Earthquake cycles and neural reverberations: Collective oscillations in systems with pulse-coupled threshold elements,” Physical Review Letters 75 (1995), pp. 1222–1225.]. В упрощенной модели землетрясения пласты земной коры постоянно воздействуют друг на друга, создавая напряжение, которое нарастает до тех пор, пока не будет достигнут некий порог. Затем эти пласты внезапно начинают скользить относительно друг друга; высвобождающаяся при этом энергия приводит к взрыву. Весь этот процесс напоминает постепенное повышение и внезапный скачок напряжения нейрона. В описанной выше модели землетрясения соскальзывания одного пласта может оказаться достаточно, чтобы запустить соскальзывание других пластов (точно так же, как запуск нейрона может вызвать цепную реакцию других разрядов в мозге). Эти каскады множащихся событий могут приводить к землетрясениям (или эпилептическим хватательным движениям у человека). В зависимости от того, какой именно оказывается конфигурация других элементов системы, результатом может быть либо едва различимый гул, либо сильное землетрясение.
Такая же математическая структура возникала в моделях других взаимодействующих систем, начиная с лесных пожаров и заканчивая массовыми вымираниями живых организмов. В каждом таком случае какой-то отдельно взятый элемент подвергается нарастающему давлению, продвигается в направлении некого порога, а затем внезапно высвобождает накопившееся напряжение и распространяет его на другие элементы, что способно
вызвать эффект домино. Модели с таким характером широко обсуждались в начале 1990-х годов. Статистика каскадов – в основном небольших, но в нескольких случаях катастрофических – изучалась теоретически физиком Пером Баком и его сотрудниками в связи с тем, что они называли самоорганизующейся критичностью[19 - Сведения о самоорганизующейся критичности можно найти в книгах Per Bak, How Nature Works: The Science of Self-Organized Crincality (New York; Copernicus Books, 1999) и Mark Buchanan, Ubiquity: The Science of History… or Why the World Is Simpler Than We Think (New York: Crown, 2001).].
Открытие, сделанное Хопфилдом, заключается в том, что самоораганизующася критичность может быть тесно связана с синхронизацией в импульсно-связанных системах осцилляторов. Интригующая возможность связи между этими двумя областями породила десятки статей, в которых исследовались возможные варианты связи[20 - С обзором литературы, которая увязывает самоорганизующуюся критичность с синхронизацией, можно ознакомиться в статье C. J. Perez, A. Corral, A. Didz-Guilera, K, Christensen, and A. Arenas, “On self-organized criticality and synchronization in lattice models of coupled dynamical systems,” International Journal of Modern Physics B 10 (1996), pp. 1111–1151.]. Этот эпизод служит примером того, как математики могут выявлять скрытую связь явлений, которые на первый взгляд кажутся не связанными между собой.
Наша работа привлекла также внимание средств массовой информации – в основном из-за ее связи со светлячками, которые вызывали у большинства людей детские воспоминания о летних вечерах, когда они ловили этих мерцающих насекомых в стеклянные банки[21 - См., например: Ivors Peterson, “Step in time,” Science News 140 (August 31, 1991), pp. 136–137; Ian Stewart, “All together now,” Nature 350 (1991), p. 557; Walter Sullivan, “A mystery of nature: Mangroves full of fireflies blinking in unison,” New York Times (August 13, 1991), p. C4.]. В результате этого повышенного внимания со стороны прессы в 1992 г. я получил восторженное письмо от женщины по имени Линн Фост, проживающей в Ноксвилле, Теннеси. В характерной для нее вежливой и непосредственной манере она была готова разрушить давний миф о синхронно мерцающих светлячках. Вот о чем она поведала мне в своем письме.
Я уверена, вам известно об этом. Поэтому хочу лишь напомнить о том, что в национальном парке «Грейт-Смоки Маунтин» вблизи г. Элкмонт, Теннеси, у мерцающих насекомых наблюдается что-то наподобие группового синхронизма. Сеансы мерцания у них происходят с середины июня и начинаются каждые сутки примерно в 10 часов вечера. После 6 секунд полной темноты тысячи насекомых в течение трех секунд с идеальным синхронизмом совершают шесть быстрых вспышек, после чего все они «потухают» еще на 6 секунд.
В Элкмонте у нас есть маленький домик (к сожалению, по распоряжению руководства национального парка, он должен быть снесен в декабре 1992 г.) и, насколько нам известно, этот конкретный вид группового синхронного мерцания наблюдается лишь на этой небольшой территории. Между тем это поистине завораживающее зрелище.
Описанные мною насекомые существенно отличаются от наших обычных светлячков, которые после наступления темноты просто загораются и потухают в произвольные моменты времени.
Далее Линн Фост рассказала в своем письме, что по другую сторону речушки, на берегу которой стоит их домик, светлячки, расположившиеся выше по склону холма, начинают свою последовательность свечений чуть раньше тех, которые расположились ниже, поэтому у наблюдателя возникает впечатление огоньков, сбегающих волной вниз по склону холма, «что-то наподобие водопада светлячков».
Она отправила письмо руководству национального парка в Элкмонте с просьбой не проводить реконструкцию парка и не разрушать естественную среду обитания насекомых по крайней мере до тех пор, пока ученые не изучат их поведение. Ведь это явление можно наблюдать лишь в строго определенном месте этого национального парка. Кстати, уникальность этого места натолкнула Линн Фост на мысль о том, что проживающие там люди, наверное, делают что-то такое, что способствует столь необычному мерцанию светлячков. Она предположила, что причиной может быть периодическое подстригание травяных газонов местными жителями. На протяжении 50 лет жители Элкмонта подстригают свои газоны примерно каждые две недели. Это позволяло личинкам светлячков благополучно перезимовать, зарывшись в заросли короткой травы на болотистой почве. Весной эти личинки превращались в светлячков, которые размножались летом. Следовательно, по мнению Линн Фост, если Элкмонт покинут все его нынешние жители, регулярно подстригающие свои газоны, светлячки могут быть утрачены для науки раз и навсегда. В поддержку своей гипотезы, касающейся стрижки травяных газонов, Линн Фост указывала, что самые высокие концентрации светлячков отмечались
непосредственно возле домиков местных жителей и охватывали участки, на которых регулярно подстригалась трава… Ни одной из личинок не удалось обнаружить на участке, где раньше стоял дом «дядюшки Лема Оуенбая», то есть там, где уже давно не подстригают траву. На протяжении 15 лет, за которые на месте лужайки, примыкавшей к дому Мейны Маккинн, успел вырасти лес, она отмечала существенное уменьшение «своей» популяции светлячков.
Линн также удручала перспектива расставания со своим жильем и привычным окружением. К тому времени семейство Фостов наслаждалось фантастическим мерцанием светлячков уже на протяжении 40 лет. Каждый июнь три поколения Фостов укутывались в пледы и молча сидели на неосвещенном крыльце своего домика в ожидании начала очередного представления.
То, что было так знакомо семейству Фостов, было новостью для науки[22 - Об истории открытия, совершенного Линн Фост, рассказывается в статье Carl Zimmer, “Fireflies in lockstep,” Discover 15 (June 1994), pp. 30–31, и в статье Susan Milius, “U.S. fireflies flashing in unison,” Science News 155 (March 13, 1999), pp. 168–170. Прекрасный материал в пересказе самих очевидцев опубликован в газете The Tennessee Conservationist: Lynn Faust, Andrew Moiseff, and Jonathan Copeland, “The night lights of Elkmont,” The Tennessee Conservationist (May/June 1998), pp. 12–15. Научный материал на эту тему можно найти в статье Andrew Moiseff and Jonathan Copeland, “Mechanisms of synchrony in the North American firefly Photinus carolinus (Coleoptera: Lampyridae),” Journal of Insect Behaviors (.1995), p. 395.]. Эти любительские наблюдения могли стать первым хорошо задокументированным случаем синхронного мерцания светлячков в Западном Гэмпшире. На протяжении многих десятилетий после дискуссии, разгоревшейся в начале XX века в журнале Science, было принято считать, что такое явление не встречается на американском континенте – только в Азии и Африке. Я познакомил Линн с Джонатаном Коуплендом, исследователем светлячков, работающим в Южном университете Джорджии. Коупленд вместе со своим коллегой Энди Моисеффом из Коннектикутского университета подтвердил, что светлячки, обитающие у домика Фостов, мерцают синхронно, причем величина рассинхронизации между светлячками не превышает трех сотых долей секунды.
Несмотря на то что в 1992 г. Элкмонт был в конечном счете поглощен национальным парком «Грейт-Смоки Маунтин», светлячкам удалось пережить эту трансформацию, и их «Световое шоу» продолжилось, став хорошей приманкой для туристов. Что касается Линн Фост, то ее по-прежнему увлекает повсеместность синхронизма в природе и она по-прежнему совершает свои открытия. Вот, например, о чем она написала мне в 1999 г.: «Еще одно явление простого синхронизма мне довелось наблюдать этой весной,
когда четыре индюка (не диких, а домашних) во время весеннего брачного периода собираются в круг и начинают синхронно кулдыкать, после того как их вожак (во всяком случае, мне показалось, что он является их вожаком) издает первый звук».
Далеко не все из нас способны оценить по достоинству чудеса синхронизма в мире животных[23 - Dick Milne, “Govt. blows your tax $$ to study fireflies in Borneo: Not a bright idea!” National Enquirer (May 18, 1993), p. 23.]. Например, 18 мая 1993 г. в таблоиде National Enquirer была опубликована статья, озаглавленная «Правительство швыряет на ветер деньги налогоплательщиков, выделяя средства на изучение светлячков, обитающих на острове Борнео. Не самая блестящая идея!». Автор статьи издевательски высказывался по поводу предоставления Национальным научным фондом одного из грантов и сообщал, что член Палаты представителей Том Петри (член Республиканской партии от штата Висконсин) «не считает, что это исследование окажется таким уж полезным, и хочет “зарубить” его. “Тратить деньги налогоплательщиков на изучение светлячков кажется мне не самой лучшей идеей”».
Нет ничего удивительного в том, что Том Петри – как и большинство людей, далеких от науки – не понимает важность этой проблемы. Между тем важность изучения светлячков трудно переоценить. Например, до 1994 г. самопроизвольные пульсации трафика между устройствами, которые называются маршрутизаторами, доставляли немало проблем специалистам, работающим с интернетом[24 - Sally Floyd and Van Jacobson, “The synchronization of periodic routing messages,” IEEE-ACM Transactions on Networking 2 (1994), pp. 122–136.]. Лишь в 1994 г. стало понятно, что маршрутизаторы ведут себя подобно светлячкам, периодически обмениваясь сообщениями, которые непреднамеренно синхронизировали их. Как только причина была выявлена, стало ясно, как избавиться от этих «заторов» в компьютерной сети. Инженеры разработали децентрализованную архитектуру, обеспечивающую более эффективное тактирование компьютерных цепей: для достижения синхронизма с невысокими затратами и высокой надежностью они взяли на вооружение стратегию светлячков. (Эти скромные насекомые даже помогают спасти людям жизнь. По иронии судьбы, на той же неделе, когда в National Enquirer были опубликованы «разоблачения» Тома Петри, в статье, опубликованной журналом Time, сообщалось о том, что врачам удалось использовать светоизлучающий фермент светлячков – люциферазу – для ускорения испытаний лекарств от особо стойких разновидностей туберкулеза[25 - Анонимный автор, “Lighting the way. Tuberculosis sufferers are getting glowing help from the firefly,” Time (May 17, 1993), p. 25. Эта статья базируется на исследовании W. R. Jacobs et al., “Rapid assessment of drug susceptibilities of mycobacterium-tuberculosis by means of luciferase reporter phages,” Science 260 (1993), pp. 819–822.].)
Групповое поведение светлячков не только служит источником вдохновения для инженеров, но имеет более широкое научное значение. Это один из немногих поддающихся трактовке примеров сложной самоорганизующейся системы, в которой одновременно происходят миллионы взаимодействий, когда каждый элемент системы изменяет состояния всех остальных ее элементов. Практически все основные нерешенные проблемы в современной науке имеют такой запутанный характер. Рассмотрим, к примеру, каскад биохимических реакций в отдельно взятой клетке и нарушение их хода, когда эта клетка оказывается раковой; взлеты и падения фондового рынка; формирование сознания в результате взаимодействия триллионов нейронов в мозге; зарождение жизни из сложнейшей сети химических реакций, протекавших в первичном бульоне. Все эти примеры включают огромные количества «действующих лиц», соединенных между собой в сложные сети. В каждом таком случае самопроизвольно возникают изумительные картины. Богатство окружающего нас мира во многом объясняется чудесами самоорганизации.
К сожалению, наш разум не в состоянии уяснить столь сложные системы. Мы привыкли мыслить о системах с точки зрения централизованного управления, четких цепочек команд, простой причинно-следственной логики. Но когда нам приходится иметь дело с системами, содержащими огромные количества взаимосвязанных элементов, когда каждый элемент в конечном счете влияет на все остальные части системы, наши стандартные способы мышления оказываются бессильны. Простые картины и словесные формулировки слишком близоруки. Именно это создает проблемы в экономике, когда мы пытаемся предугадать последствия какого-нибудь очередного урезания налогов или изменения процентных ставок, или в экологии, когда применение какого-нибудь нового пестицида приводит вовсе не к тем результатам, на которые мы рассчитывали (например в продукты питания попадают вредные вещества).
Загадка синхронного мерцания светлячков стоит в одном ряду со множеством концептуальных проблем, подобных ей, хотя, разумеется, найти ее решение гораздо легче, чем найти решение проблем экономики или экологии. Мы имеем достаточно полное представление о природе индивидуальных организмов (светлячков), их поведении (ритмичное мерцание) и их взаимодействии («перезапуск» в ответ на свечение), в отличие от наших весьма приблизительных представлений об экологических системах или глобальном рынке, которые характеризуются множеством разнообразных компаний и видов живых организмов и неизвестными нам режимами взаимодействия элементов этих сложных систем. Достичь понимания таких систем отнюдь не просто. В действительности все, о чем было сказано выше, является лишь незначительной частью того, что нам удалось понять к настоящему времени. Однако приведенной выше информации вполне достаточно для того, чтобы читатели уяснили, как математика помогает нам раскрывать тайны спонтанно возникающего порядка, и получили наглядный пример того, что может (и чего не может) сделать для нас математика на этой примитивной, самой начальной стадии исследования.
Несмотря на то что в живом мире синхронизм встречается повсеместно, его функция не всегда очевидна. Почему, например, светлячки мерцают в унисон? Биологи предлагают по меньшей мере 10 правдоподобных объяснений этого явления[26 - Разные гипотезы относительно адаптивного значения синхронизма светлячков перечислены в статье John Buck, “Synchronous rhythmic flashing of fireflies. II,” Quarterly Review of Biology 63 (1988), pp. 265–289.]. Старейшая из них называется «гипотезой маяка». Уже давно известно, что лишь самцы светлячков синхронизируют свои мерцания; таким образом, согласно данной точке зрения, это «световое представление» адресовано самкам – что-то наподобие коллективного приглашения в компанию. Синхронно мерцая, самцы усиливают этот приглашающий сигнал, охватывая им значительную площадь джунглей и привлекая самок, которые в противном случае могли бы не заметить свечения. Именно поэтому такой синхронизм характерен для местностей, покрытых густой растительностью (подобно джунглям Таиланда и Малайзии или лесу позади домика Линн Фост), но редко наблюдается на открытых лугах восточной части Соединенных Штатов, где светлячки могут без проблем назначать свидания друг другу.
Второе возможное преимущество синхронизма заключается в том, что вам может просто повезти: самка, которая положила глаз на светлячка, похожего на вас, может легко спутать вашего конкурента с вами и явиться на свидание не с ним, а с вами. Именно поэтому синхронизм может
быть необходим и для того, чтобы запутать хищников: в толпе всегда можно затеряться. Самое последнее по времени своего появления объяснение заключается в том, что синхронизм является отражением конкуренции, а не сотрудничества: каждый из светлячков пытается сверкнуть первым (поскольку самки, по-видимому, предпочитают именно первого), но если этой стратегии придерживается каждый из светлячков, то синхронизм наступает автоматически[27 - M. D. Greenfield and I. Roizen, “Katydid synchronous chorusing is an evolutionarily stable outcome of female choice,” Nature 364 (1993), pp. 618–620. Мысль о том, что синхронизм является отражением конкуренции, была высказана здесь применительно к кузнечикам углокрылым. Но она может относиться также к светлячкам, манящим крабам и другим живым существам.].
У многих других живых существ взаимный синхронизм также каким-то образом связан с функцией продолжения рода. Периодические цикады[28 - Американская цикада (лат. Magicicada septendecim, семейство Cicadidae, подотряд Homoptera), личинки которой появляются в больших количествах с периодичностью, составляющей семнадцать лет (на юге – с периодичностью, составляющей тринадцать лет). Прим. перев.] пытаются перехитрить своих врагов, прячась под землей на долгие семнадцать лет, после чего миллионы этих насекомых одновременно появляются на свет, проводят брачный период длиною в один месяц и прекращают свое существование[29 - Susan Milius, “Cicada subtleties: What part of 10,000 cicadas screeching don’t you understand?” Science News 157 (June 24, 2000), pp. 408–410. Высказывалось множество любопытных предположений относительно того, почему репродуктивные циклы цикад зачастую составляют 13 или 17 лет, но никогда 12, 14, 15, 16 или 18 лет. Объяснение, возможно, каким-то образом связано с теорией чисел. И 13, и 17 являются простыми числами (делятся только сами на себя и на 1), тогда как другие – нет. Если жизненные циклы потенциальных врагов периодических цикад составляют от 2 до 5 лет – что, по-видимому, имеет место в действительности, – то такая нумерология помогает периодическим цикадам избегать попадания в синхронизм со своими врагами. См. главу под названием “Of bamboos, cicadas, and the economy of Adam Smith” в книге Stephen Jay Gouid, Ever Since Darwin: Reflections in Natural History (Penguin Books, 1977). Альтернативную теорию, а также обзор последней литературы по «проблеме цикад» можно найти в статье Eric Goles, Oliver Schulz, and Mario Markus, “Prime number selection of cycles in a predator-prey model,” Complexity 6 (2001), pp. 33–38.]. Группы самцов манящего краба (род Uca, семейство Ocypodidae), у каждого из которых имеется единственная, невероятно большая клешня, находят наилучшее применение своим природным талантам: они заигрывают с самкой, окружив ее и размахивая в унисон своими гигантскими клешнями[30 - P. R. Y. Backwell, M. D. Jenmons, N. I. Passnsore, and J. H. Christy, “Synchronous waving in a fiddler crab,” Nature 391 (1998), pp. 31–32. Популярный материал на эту тему был опубликован в газете New York Times: Malcolm W. Browne, “Flirting male crabs found to wave claws in unison,” New York Times (January 6, 1998), p. C4.]. (Весь этот ритуал выглядит так, словно множество маленьких дирижеров дирижируют единственным музыкантом.)
Что же касается людей, то синхронизацией занимаются именно женщины. Большинству женщин знакомо явление менструального синхронизма, суть которого заключается в том, что у сестер, женщин, проживающих в одной комнате, близких подруг или сотрудников, проводящих много времени вместе, менструальные циклы начинаются примерно в одно и то же время. Такой менструальный синхронизм, долгое время бывший скорее объектом для шуток, чем серьезного изучения, впервые был научно задокументирован Мартой Макклинток, в то время студенткой, обучавшейся в женском колледже Wellesley (штат Массачусетс) по специальности «Психология»[31 - Основополагающий материал по этой теме можно найти в статье Martha K. McClintock, “Menstrual synchrony and suppression,” Nature 229 (1971), pp. 244–245.]. Она провела исследование, объектом которого были 135 ее товарищей по учебе, попросив их на протяжении всего учебного года фиксировать даты начала своих менструальных циклов. В октябре менструальные циклы близких подруг и девушек, проживавших в одной комнате студенческого общежития, различались в среднем на 8,5 дня, но уже к марту среднее расхождение сократилось до 5 дней – статистически значимое сокращение. В контрольной группе, составленной из произвольно подобранных пар девушек, не удалось выявить каких-либо изменений.
Высказывались разные соображения относительно механизма синхронизации в этом случае, однако наиболее правдоподобная версия заключается в том, что это каким-то образом связано с феромонами, то есть неустановленными химическими веществами без запаха, которые каким-то путем передают сигнал синхронизации[32 - Анонимный автор, “Olfactory synchrony of menstrual cycles,” Science News 112 (July 2, 1977), p. 5. Оригинальный материал был опубликован спустя три года; см. статью M. J. Russell, G. M. Switz, and K. Thompson, “Olfactory influences on the human menstrual cycle,” Pharmacology Biochemistry and Behavior 13 (1980), pp. 737–738.]. Первым подтверждением этой догадки стал эксперимент, о котором сообщил в 1980 г. биолог Майкл Рассел. Его коллега, Женевьева Свиц, обнаружила этот эффект в своей собственной жизни: проживая в течение всего лета в одной комнате с одной из своих подруг, она обратила внимание, что их менструальные циклы сблизились. После того как они расстались, их менструальные циклы рассинхронизировались. Из этого можно было заключить, что Женевьева – мощный синхронизатор. Рассел попытался выяснить, что же такого особенного в Женевьеве, что обеспечивает ей столь уникальное свойство. В ходе эксперимента она клала себе под мышки небольшие хлопчатобумажные прокладки, каждый день сдавая на анализ Расселу пот, накопившийся в этих прокладках. Рассел смешивал эти пробы пота с небольшим количеством спирта и делал мазок этой «эссенцией Женевьевы» на верхней губе женщин, согласившихся выполнять роль «подопытных» в этом эксперименте. Эти опыты проводились трижды в неделю на протяжении четырех месяцев.
Результаты эксперимента оказались впечатляющими. По истечении четырех месяцев менструальные циклы женщин, участвовавших в эксперименте, в среднем начинались с разницей 3,4 дня по сравнению с началом менструального цикла у Женевьевы, между тем как в начале эксперимента эта разница составляла в среднем 9,3 дня. С другой стороны, начало менструальных циклов женщин в контрольной группе (на верхние губы которых наносился лишь спиртовой раствор) существенно не изменилось. Совершенно очевидно, что какое-то вещество в потовых выделениях Женевьевы передавало информацию о фазе ее менструального цикла таким образом, что это увлекало за собой менструальные циклы других женщин, которые улавливали запах этого вещества.
Последующие исследования принесли не столь впечатляющие результаты. В некоторых из них были обнаружены статистические свидетельства синхронизма, в других – нет. Скептики восприняли эти противоречивые данные как свидетельство слабости или случайной природы данного явления. Недавняя работа Макклинток (в настоящее время она занимается исследованиями по биологии в Чикагском университете) свидетельствует об обратном – о том, что синхронизм менструальных циклов – это лишь наиболее заметное следствие более масштабного явления: химической связи/взаимодействия между женщинами[33 - Kathleen Stern and Martha K. McClintock, “Regulation of ovulation by human pheromones,” Nature 392 (1998), pp. 177–179. Работа Макклинток, касающаяся менструального
синхронизма и феромонов человека, остается весьма спорной. В статье Martha K. McClintock, “Whither menstrual synchrony?” Annual Review of Sexual Research 9 (1998), pp. 77–95, Макклинток выступает с энергичной защитой своего мнения. См. также увлекательный и познавательный материал на эту тему в популярной книге Natalie Angier, Woman: An Intimate Geography (New York: Houghton Mifflin, 1999), pp. 170–175. Автор этой книги характеризует Макклинток как «женщину, которая носит яркие шарфы поверх кашемировых свитеров, необычные украшения, сизо-серые носки с изображениями черных рыб и излучает неизбывный энтузиазм».]. В ходе эксперимента, проведенного в 1998 г., Макклинток вместе со своей коллегой Кэтлин Стем выяснила: если брать мазки из подмышек женщин в разные моменты их менструальных циклов и наносить эти мазки на верхние губы других женщин, то донорские секреции систематическим образом сдвигают фазу менструального цикла у реципиента. Мазки, взятые у женщин в начале их менструального цикла, в фолликулярной фазе до овуляции, обычно сокращали менструальные циклы женщин, которые получали эти мазки. Иными словами, овуляция у реципиентов происходила на несколько дней раньше, чем обычно. Напротив, мазки, взятые у женщин во время овуляции, продлевали менструальные циклы реципиентов. А секреции, собранные на лютеиновой фазе (фаза желтого тела яичника), в дни перед менструацией, не вызывали никаких изменений.
Наш вывод сводится к тому, что женщины в какой-либо сплоченной группе всегда оказывают воздействие на менструальные циклы друг друга, бессознательно участвуя в молчаливом общении феромонами. Одним из возможных последствий такого общения является синхронизм менструальных циклов. Но если принять во внимание, что такие феромональные сигналы могут либо сближать циклы, либо разводить их во времени в зависимости от того, в какой день месяца были сгенерированы эти сигналы, нет ничего удивительного в том, что в данном случае синхронизм не является неизбежным – должен также быть возможен асинхронизм или даже антисинхронизм (при котором менструальные циклы наступают в противофазе друг другу), что и наблюдается на практике.
Функция этого «химического диалога» остается для ученых загадкой. Возможно, что женщины подсознательно стремятся к тому, чтобы овуляция и зачатие происходили у них синхронно с подругами (чтобы получить возможность совместно выхаживать, родить и вскармливать детей) и в противофазе со своими недругами (чтобы избежать конкуренции с ними за ограниченные ресурсы). Сколь бы притянутыми за уши ни казались такие соображения, именно такой сценарий реализуется у других млекопитающих. Самки крыс в синхронизированной группе производят более многочисленное и здоровое потомство, чем то, которое приносит отдельно взятая самка крысы. Репродуктивный синхронизм обеспечивает преимущества всем, если другие самки в группе склонны к сотрудничеству.
С математической точки зрения данные, полученные Макклинток, подтверждают то, о чем вы, вероятно, уже догадываетесь: женщины, если их рассматривать как связанные осцилляторы, синхронизируют друг друга значительно слабее, чем светлячки. Биохимические взаимодействия между ними не всегда приводят их к синхронизму, в отличие от светлячков в Юго-Восточной Азии, которые синхронизируют свои мерцания ночь напролет, 365 дней в году. Неизбежный синхронизм этих светлячков (и клеток-ритмоводителей сердца) напрочь лишен гибкости, и именно по этой причине редко встречается в других биологических системах. Подобно женщинам, большинство осцилляторов достигают синхронизма в одних обстоятельствах и не достигают в других.
Таким образом, модель, рассмотренная нами ранее в этой главе, начинает выглядеть как чересчур упрощенная. Несмотря на то, что она помогла нам понять, почему синхронизм может оказаться неизбежным при определенных условиях, она зашла слишком далеко: она не учитывает всего остального. Уточненная теория связанных осцилляторов должна уметь предсказывать, будет ли синхронизироваться какая-то определенная группа осцилляторов; она должна также указывать нам, какие факторы являются решающими в этом отношении.
Эта теория должна также учитывать весь спектр способов взаимодействия между осцилляторами. Вспомните, что светлячки «подталкивают» друг друга внезапными импульсами – световыми ударами, – но затем игнорируют друг друга в оставшееся время своего цикла, тогда как женщины все время взаимодействуют с осцилляторами друг друга. В природе часто встречаются оба типа связи, но существующая модель учитывает лишь импульсы. Более совершенная модель должна распространяться и на непрерывное взаимодействие.
Кроме того, до сих пор мы предполагали, что все осцилляторы в данной популяции строго идентичны. Однако реальные осцилляторы не могут быть строго идентичны, а это означает, что фактическая длительность цикла у всех них тоже неодинакова. Точно так же, как длительность менструального цикла у одной женщины может составлять 25 дней, а у другой – 35 дней, все другие виды биологических осцилляторов характеризуются неким статистическим распределением длительностей цикла. Даже электронным и механическим осцилляторам, которые должны характеризоваться строго определенной длительностью цикла (номинальное значение которой является одним из важнейших параметров таких осцилляторов), присущ некоторый разброс, что объясняется незначительными погрешностями производства или колебаниями свойств материалов, использовавшихся для их изготовления.
К сожалению, эти нюансы порождают колоссальные математические трудности. Одно дело – желать более реалистичной модели, и другое – создать такую модель, поддающуюся интерпретации. Мы не сможем углубить свои познания, если используемая нами модель окажется такой же сложной, как и явление, которое описывает эта модель. Именно поэтому математическое моделирование является не только наукой, но и искусством: элегантная модель представляет собой идеальный компромисс между простотой и достоверностью. Сегодня мы располагаем прекрасной моделью синхронизма, в которой достигнут именно такой компромисс. Ее создание является результатом коллективного труда, который растянулся на три десятилетия и потребовал усилий трех первопроходцев, первый из которых был одним из самых прозорливых и оригинальных мыслителей XX столетия.
Глава 2. Мозговые волны и условия синхронизма
Норберт Винер никогда не был знаменитостью в полном смысле этого слова. Но когда в 1950-е годы была опубликована его книга «Кибернетика», она вызвала большие волнения среди читающей публики. Обозреватель газеты New York Times назвал эту книгу «основополагающей и сопоставимой по своей важности с трудами Галилея, Мальтуса, Руссо или Милля». Винер предложил единый подход к осмыслению проблем связи и управления, будь то системы нервных клеток или общества, животные или машины, компьютеры или люди[34 - Norbert Wiener, Cybernetics, 2
edition (Cambridge, Massachusetts: MIT Press, 1961). (Русский перевод: Н. Винер. Управление и связь в животном и машине. Новые главы кибернетики. М.: Советское радио, 1963.)]. В большей степени это было похоже на мечту, чем на законченную теорию, а выводы, сделанные Винером, были несколько скоропалительными и преждевременными. Сегодня
никто не сказал бы, что его специальностью является кибернетика, однако первая половина слова «кибернетика» продолжает свою жизнь в качестве модного префикса в таких, например, словах, как «киберпространство» и «киберпанк».
Однако в научном мире имя Норберта Винера никогда не будет забыто по причинам как серьезным, так и не очень серьезным[35 - Обзор научных достижений Винера и небольшую подборку забавных случаев из его жизни можно найти в книге Pest R. Masani, Norbert Wiener 1894–1964 (Vita Mathematics, vol. 5), (New York Springer-Verlag, 1990).]. Что касается серьезных причин, то имя Норберта Винера увековечено в математической терминологии: винеровский процесс, теорема Пэли-Винера, метод Винера-Хопфа и т. д. Бывший вундеркинд, который в восемнадцать лет защитил диссертацию в Гарвардском университете, Норберт Винер совершил революцию в теории случайных процессов. Выполненный им анализ броуновского движения, хаотических перемещений молекул в растворе, оказался значительным шагом вперед по сравнению с интуитивным подходом Альберта Эйнштейна к решению той же проблемы, а предложенные им методы заложили фундамент для последующих работ Ричарда Фейнмана по квантовой электродинамике, а также для работ в области финансов, выполненных будущими лауреатами Нобелевской премии Фишером Блэком и Майроном Скоулзом.
Что же касается менее серьезной стороны, то математики любят пересказывать друг другу разные истории о Винере. Невысокого роста, похожий на колобка, всегда в очках с толстыми линзами и с неизменной сигарой в зубах, Винер обожал разъезжать по коридорам Массачусетского технологического института на своем уницикле – одноколесном велосипеде. Даже в профессии, обладатели которой не могут похвастаться своей любовью к спорту или здравому смыслу, Винер выделялся из общей массы. Когда ему не удалось нормально принять ни одной из многочисленных подач от своего партнера по теннисной партии, Винер предложил тому поменяться ракетками. Винер славился своей рассеянностью. Когда он вместе со своей семьей переезжал из Кембриджа в Ньютон (их новое место жительства), его жена выписала на листке бумаги их новый адрес и подробнейшим образом описала, как туда добраться из его офиса (она была уверена, что Норберт забудет об их переезде). Так и случилось. Винер использовал этот листок бумаги в качестве черновика для каких-то вычислений, выбросил его в корзину для мусора и по окончании работы вернулся в свой старый дом. Прибыв туда, он понял, что уже не проживает там, остановил на улице маленькую девочку и спросил, не знает ли она, куда переехало семейство Винеров. Она сказала: «Конечно, дедушка, знаю. Пойдем со мной».
Винер является одной из центральных фигур в науке о синхронизме. Частично это объясняется тем, что именно он сформулировал вопрос, который не отваживался поставить никто из ученых до него. До Винера математики довольствовались изучением систем лишь с двумя связанными осцилляторами. Винер взялся за изучение систем, включающих в себя миллионы осцилляторов. Еще более важным является, наверное, то обстоятельство, что Винер первым указал на повсеместность синхронизма во Вселенной. Стрекочущие сверчки, квакающие лягушки, мерцающие светлячки, интервалы в поясе астероидов, генераторы в энергосистеме – во всех этих системах Винер обнаружил синхронизм. Поверхностные различия не ввели его в заблуждение. Его интересовали глобальные принципы. Он полагал, что выявил один из таких принципов, когда размышлял над происхождением мозговых волн у человека.
В конце 1950-х годов никто не понимал, зачем мозг вообще излучает волны. Но несколькими десятилетиями ранее физиологи обнаружили, что если к разным точкам кожи на черепе человека подсоединить электроды, на электродах появляется очень небольшое напряжение, причем это напряжение изменяется во времени. После того как инженерам удалось разработать весьма чувствительные электронные усилители, появилась возможность автоматически представить эти микроскопические флуктуации напряжения, или «мозговые волны», в графическом виде на бумажной ленте. Устройство, использующееся для регистрации мозговых волн, называется электроэнцефалографом. (Такая же технология используется в тестах на детекторе лжи и для контроля работы сердца и должна быть знакома каждому, кто смотрел по телевизору репортажи из больниц.)
Специалисты по измерению мозговых волн (то есть по расшифровке электроэнцефалограмм) умеют распознавать в этих записях мозговой деятельности характерные картины. Одна картина, так называемый альфа-ритм, наблюдается у людей, которые бодрствуют, но пребывают в расслабленном состоянии, а их глаза закрыты[36 - В последней главе книги Cybernetics излагаются представления Норберта Винера об альфа-ритме мозговых волн и приводятся его рассуждения о самоорганизации в других системах связанных осцилляторов. (Он полагал, что это имеет какое-то отношение к вирусам, генам и раковым заболеваниям.) Более раннее изложение этих проблем, имеющее более технический характер, можно найти в книге Norbert Wiener, Nonlinear Problems in Random Theory (Cambridge, Massachusetts: MIT Press, 1958). (Русский перевод: Н. Винер. Нелинейные задачи в теории случайных процессов. М.: ИЛ, 1961.)]. Субъективно это ощущается как приятное состояние «отключения» от внешнего мира. На электроэнцефалограмме это выглядит как ярко выраженная осцилляция с частотой примерно 10 циклов в секунду.
Винер хотел изучить альфа-ритм гораздо подробнее, поскольку у него были кое-какие соображения по поводу того, какой может быть функция альфа-ритма. Винер полагал, что альфа-ритм является отражением работы некого задающего (или тактового) генератора, встроенного в мозг человека. Компьютеру необходим тактовый генератор, чтобы синхронизировать сигналы, которыми обмениваются между собой тысячи компонентов машины. Винер предположил, что мозг мог бы поступать аналогично и координировать миллиарды нейронов, заставляя их действовать в ритме, задаваемом неким «барабанщиком». Очевидно, отдельно взятые нейроны не могли выполнять такую функцию, поскольку были известны как слишком неточные осцилляторы, неспособные исполнять роль надежного тактового генератора. Винер выдвинул гипотезу, что мозг весьма изобретательно формирует точный тактовый генератор на основе огромного количества неточных тактовых генераторов. Он предположил, что в каком-то месте мозга могут быть сосредоточены миллионы специализированных осцилляторов, которые, возможно, являются отдельными нейронами или небольшими кластерами нейронов, причем все они разряжаются с частотой примерно 10 раз в секунду. Подобно любой другой биологической популяции, эти осцилляторы, несомненно, не идентичны: некоторые из них изначально действуют быстрее других, срабатывая 12 раз в секунду, тогда как другие, напротив, действуют медленнее, срабатывая лишь 8 раз в секунду; при этом большинство осцилляторов работают на частоте, близкой к средней, то есть к 10 циклам в секунду. Предоставленная сама себе, эта разнородная совокупность нейронных осцилляторов выдает импульсы с разными частотами, создавая электрическую какофонию, подобную звучанию оркестра во время настройки инструментов перед началом представления. Чтобы работать вместе как
единый и слаженный часовой механизм, эти гипотетические осцилляторы должны координировать свои действия, чувствовать электрические ритмы друг друга и реагировать на них соответствующим образом.
Идея Винера заключалась в том, что эти осцилляторы должны самопроизвольно синхронизироваться, подстраивая частоты друг друга. Если какой-то осциллятор работает слишком быстро, остальные осцилляторы в соответствующей группе должны замедлить его; если же какой-то осциллятор работает слишком медленно, остальные осцилляторы должны ускорить его работу.
Чтобы проверить, работает ли в действительности этот механизм «подтягивания» частот, Винер предложил отыскать характерные «отпечатки», которые он должен оставлять на альфа-ритме. В этом случае нам на помощь может прийти аналогия с политикой. Естественные частоты осцилляторов можно представлять себе как спектр политических взглядов в гипотетическом обществе. Крайне левые радикалы соответствуют крошечной совокупности осцилляторов, которые предпочитают работать на частоте, скажем, 8 циклов в секунду. Продвигаясь постепенно по нашему спектру вправо, мы встретим более многочисленную субпопуляцию либералов, работающих на частоте 9 циклов в секунду, доминирующее ядро центристов, работающих на частоте 10 циклов в секунду, затем натолкнемся на менее многочисленную группу консерваторов, работающих на частоте 11 циклов в секунду, и наконец – лишь небольшую горстку крайне правых радикалов, работающих на частоте 12 циклов в секунду. Положим для простоты, что диаграмма количества людей в каждой из перечисленных категорий представляет собой хорошо знакомую нам колоколообразную кривую, в которой доминирует мощный центр, и симметрично сходящую на нет по мере продвижения в правую или левую сторону от центра.
Имейте в виду, что такая картина отражает лишь тенденции, внутренне присущие системе политических взглядов. Это политические взгляды, которых придерживались бы люди (или частоты, на которых работали бы осцилляторы), если бы они были полностью изолированы от влияния других.
А теперь предоставим возможность отдельным индивидуумам влиять друг на друга; допустим также (хотя политики лишь в редких случаях действуют подобным образом), что эти осцилляторы могут изменять свои частоты. В результате уговоров со стороны других осцилляторов медленный осциллятор можно убедить работать быстрее, а быстрый осциллятор можно убедить работать медленнее. Затем, если измерить весь этот спектр, окажется, что он уже не похож на колоколообразную кривую. Винер предположил, что он выглядел бы примерно так:
Чтобы уяснить специфическую форму этого графика, вспомним, что большинство осцилляторов поначалу работало вблизи середины колоколообразной кривой. Воздействуя на частоты друг друга, многие из них сместились в абсолютный центр, образовав мощный мейнстримный консенсус (высокий и узкий пик). Их совместное влияние на остальную популяцию оказалось достаточно сильным для того, чтобы оттащить ряд «умеренных» от левого и правого крыльев (еще больше увеличив высоту пика и понизив кривую на собственых позициях «умеренных», что привело к появлению «провисаний» по обе стороны от пика). Тем не менее достигнутый консенсус не был настолько убедительным, чтобы вытеснить большинство упрямых экстремистов на краях спектра (изображенных в виде плечей на обоих концах спектра).
Винер прогнозировал, что альфа-ритм продемонстрирует точно такой же специфический пик и двойное «проседание» в своем спектре частот. В таком случае это могло бы стать убедительным свидетельством идеи Винера о том, что причиной альфа-ритма является синхронизация между осцилляторами с разными естественными частотами. Чтобы удостовериться в своей правоте, Винеру нужно было придумать способ, с помощью которого он мог бы измерить такой спектр с небывалой точностью. В данном случае Винер намеревался использовать экспериментальный метод, который несколькими годами ранее изобрел его сотрудник Уолтер Розенблит, инженер по электротехнике из Массачусетского технологического института. Розенблит придумал способ, с помощью которого мозговые волны можно регистрировать на магнитной ленте, а не на бумаге; это означало, что полученные таким образом данные можно обработать электронным способом, выполнив первый в мире количественный анализ спектра мозговых волн. Все предшествующие работы носили качественный характер: они основывались на распознавании образов, субъективных суждениях специалистов, умеющих выявлять определенные картины, анализируя электроэнцефалограммы. Пользуясь методом, предложенным Розенблитом, соответствующие вычисления можно было автоматизировать, а процесс анализа сделать вполне объективным.
О полученных таким образом результатах Винер объявил в своей монографии, написанной в 1958 г., хотя его презентация носила подозрительно отрывочный, эскизный характер. Вместо того чтобы опубликовать фактические данные (как полагалось сделать согласно критериям, принятым в научном мире – если ученый собирался обнародовать данные, подтверждающие выдвинутую им гипотезу), он сделал приблизительный набросок измеренного спектра[37 - Спектр с двойным «проседанием» воспроизведен по диаграмме на стр. 69 книги Norbert Wiener, Nonlinear Problems in Random Theory (Cambridge, Massachusetts: MIT Press, 1958).] – что-то наподобие графика, представленного выше на моем рисунке. Такие результаты показались слишком банальными и чересчур уж «правильными», чтобы быть похожими на правду. Складывалось впечатление, будто Винер что-то скрывает.
Однако его статья вовсе не заслуживала недоверия. Он утверждал, что «подтягивание» частот является универсальным механизмом самоорганизации, касающимся не только осцилляторов в мозге, но буквально всего в природе – как в живой, так и в неживой. Он настойчиво призывал биологов проводить эксперименты на лягушках, сверчках и даже на светлячках Юго-Восточной Азии задолго до появления в научной литературе статей об их синхронном мерцании. В 1961 г. он писал: «Не отваживаясь высказываться по поводу возможного исхода экспериментов, которые еще не проводились, я все же полагаю, что это направление исследований является весьма многообещающим и не слишком сложным»[38 - «Не отваживаясь высказываться…» Cybernetics, стр. 201].
Его следующей задачей была разработка подробной теории «подтягивания» частот.
К сожалению, когда он попытался подкрепить свои догадки строгими математическими доказательствами, он столкнулся с непреодолимыми трудностями. Он представил ряд грубых рассчетов, но они выглядели весьма неуклюже и вели в никуда. Винер умер в 1964 г., так и не решив одну из важнейших для себя задач. Годом позже одному из студентов удастся найти правильный подход к ее решению.
В то время Арт Уинфри был старшим научным сотрудником в Корнельском университете и занимался технической физикой. Он давно мечтал стать биологом, однако вместо того чтобы идти к своей цели проторенным путем, он решил основательно пополнить багаж своих знаний по математике и физике, надеясь освоить новый для себя инструментарий. Электроника и компьютеры, квантовая механика и дифференциальные уравнения – этими
инструментами биологи в то время, как правило, не пользовались.
Когда Уинфри размышлял над проблемой группового синхронизма, он думал о самих осцилляторах, а не просто об их частотах[39 - Самая ранняя его работа по групповому синхронизму, опубликованная в 1965 г., основывалась на эксперименте с массивом из 71 мигающей неоновой лампочки, которые электрически были соединены друг с другом. Уинфри называл такое приспособление «светлячковой машиной». Он писал, что его цель заключается в том, чтобы «просто посмотреть, как все это будет происходить»; см. главу 11, The Geometry of Biological Time. Вскоре он понял, что компьютерное моделирование обеспечивает гораздо большую гибкость, контроль и удобство интерпретации. Результаты этих исследований описаны в статье Arthur T. Winfree, “Biological rhythms and the behavior of populations of coupled oscillators,” Journal of Theoretical Biology 16 (1967), pp. 15–42, на которой базируется остальной материал этого раздела.]. В этом отношении его концептуализация данной проблемы была гораздо более подробно разработанной, чем у Винера. Он не просто характеризовал каждый осциллятор частотой, на которой тот работает (его местоположением на политическом спектре, если вернуться к нашей предыдущей аналогии), а изображал его работу шаг за шагом, на протяжении всего цикла, что является, в конце концов, самым существенным для каждоно осциллятора. Это сразу же привело к сложностям, которые заставили бы опустить руки любого другого – только не Уинфри[40 - Для читателей, сведущих в математике или физике: возможно, вас интересует, что нового и необычного было в задаче, которую сформулировал для себя Уинфри; в частности, чем она отличается от всего того, что нам рассказывали в университетах о связанных осцилляторах. Нужно помнить, что задачи, излагаемые в учебниках, исходят из того, что осцилляторы линейны (то есть они являются простыми гармоническими осцилляторами) и связаны между собой линейными взаимодействиями (например, с помощью пружин, которые подчиняются закону Гука). В этом простом случае динамические характеристики определяются в явном виде по методу нормальных режимов. Однако Уинфри понимал, что такой подход был бы неприменим к данной биологической задаче, поскольку биологические осцилляторы не линейны. В отличие от своих линейных аналогов, которые могут совершать колебания с любой амплитудой, большинство биологических осцилляторов обязательно регулируют свою амплитуду; следовательно, лучше всего моделировать их как нелинейные самоподдерживающиеся осцилляторы с устойчивым предельным циклом. В середине 60-х годов наличная математическая теория таких объектов заканчивалась на системах из двух или трех связанных осцилляторов с предельным циклом. Никто не имел ни малейшего понятия об их популяциях, особенно если их частоты были распределены случайным образом по всей популяции. К тому же нужно понимать, что такие осцилляторы не следует путать с консервативными нелинейными осцилляторами (например, ангармоническими осцилляторами, используемыми в молекулярной динамике). Такие осцилляторы запасают энергию и могут иметь любую амплитуду – что, опять-таки, является недопустимым предположением, когда речь идет о моделировании биологических самоподдерживающихся осцилляторов.]. Преимущество молодости в том и состоит, что в эту пору жизни для вас нет почти ничего невозможного.
Свою модель он совершенно сознательно сделал приблизительной. Он намеревался сделать ее достаточно общей, чтобы ее можно было применить к любой популяции биологических осцилляторов. Единственым способом охватить одной моделью типичные характеристики стрекочущих сверчков, мерцающих светлячков, пульсирующих нейронов, задающих ритм, и тому подобных объектов было не обращать внимания на все их биохимические различия, а вместо этого сосредоточиться исключительно на двух вещах, типичных для всех биологических осцилляторов: их способности отправлять и принимать сигналы.
Запутанность этой проблемы обусловлена тем, что оба указанных свойства изменяются в течение цикла осциллятора: влияние и чувствительность являются функциями фазы. Например, цикл светлячка состоит из внезапной вспышки, затем следует интервал темноты (пока светлячок перезаряжает орган, который обеспечивает свечение), затем следует очередная вспышка и т. д. Эксперименты показали, что светлячки на приемном конце замечают вспышку другого светлячка, но игнорируют темноту. Поэтому в математическом описании, предложенном Уинфри, «функция влияния» должна изменяться в промежутке между двумя уровнями: высоким во время вспышки и близким к нулю во время темноты. Аналогично «функция чувствительности» показывает, как осциллятор реагирует на принимаемые им сигналы. Увидев вспышку в течение одной части своего цикла, светлячок может ускорить работу своего внутреннего таймера. Увидев точно такую же вспышку в течение какой-либо другой части цикла, светлячок может замедлить работу своего внутреннего таймера или вообще не влиять на его работу. Чтобы полностью охарактиризовать любой осциллятор в своей модели, Уинфри было достаточно использовать эти две функции. Выбрав эти две функции, можно было определить поведение осциллятора и как отправителя, и как получателя сигналов.
Чтобы сделать эти идеи как можно более конкретными, представим осциллятор в виде бегуна трусцой, бегущего по круговой дорожке стадиона. Разные места на этой дорожке представляют разные фазы цикла биологической активности осциллятора. Если дорожка представляет, например, менструальный цикл, то одна из ее точек соответствовала бы овуляции. Другая, соответствующая примерно половине длины дорожки, соответствовала бы менструации, а места между этими двумя точками соответствовали бы промежуточным гормональным событиям. После совершения одного круга бегун снова вернулся бы в точку овуляции. Или, если такая дорожка должна представлять ритм мерцания светлячка, разные ее места означали бы свечение как таковое, сопровождаемое разными стадиями биохимического восстановления, в ходе которого орган, отвечающий за свечение этого насекомого, перезаряжается и готовится к своему очередному свечению.
Если следовать подобной логике, то два связанных осциллятора будут похожи на двух бегунов, которые во время бега постоянно обмениваются между собой командами. Что именно они кричат друг другу и насколько громко они произносят эти слова, определяется их текущими местоположениями на дорожке: эта информация заключена в функции влияния, предложенной Уинфри. Если, например, величина функции влияния одного бегуна в данный момент мала и положительна, он кричит другому бегуну: «Беги, пожалуйста, немного быстрее». С другой стороны, высокое отрицательное значение функции влияния означает: «Ты бежишь слишком быстро. Помедленнее, пожалуйста!» А нулевое значение функции влияния вообще ничего не означает для партнера. С течением времени оба бегуна продолжают свой бег по дорожке, поэтому выкрикиваемые ими команды продолжают меняться от момента к моменту.
Такая картина носит слишком общий характер. Она может учитывать импульсные взаимодействия, используемые светлячками, сверчками и нейронами (аналогично внезапному крику, за которым
следует молчание в течение остальной части цикла), или постоянное подталкивание и подтягивание феромонов, обнаруженное Макклинток и Стерном для менструального цикла (постоянно меняющаяся последовательность требований ускориться или замедлиться).
Между тем оба бегуна и прислушиваются к командам своего партнера, и выкрикивают их. Как именно они реагируют на поступающее сообщение, определяется другой функцией Уинфри – функцией чувствительности, которая также бывает разной в разных местах дорожки. Когда чувствительность оказывается высокой и положительной, бегун демонстрирует покладистость и выполняет любые инструкции, которые поступают ему в данный момент. Если же чувствительность равна нулю, он не обращает внимания на эти инструкции. А если чувствительность отрицательна, бегун поступает вопреки принимаемым им инструкциям: он ускоряется, когда от него требуют замедлиться, и наоборот. В данном случае модель также носит слишком общий характер, как и модель Пескина, которую мы обсуждали в предыдущей главе (она предполагала, что осцилляторы всегда продвигаются вперед, когда их подталкивает импульс). В модели Уинфри фазу осциллятора можно либо продвинуть вперед, либо задержать в зависимости от того, на каком этапе своего цикла этот осциллятор принял импульс. Эксперименты показали, что именно так ведут себя реальные биологические осцилляторы.
Для большей простоты Уинфри предположил, что все осцилляторы в данной популяции имеют одинаковые функции влияния и чувствительности. Но он допустил возможность разнообразия так же, как сделал до него Винер: он предположил, что естественные частоты осцилляторов распределены по всей популяции в соответствии с колоколообразной кривой. Если продолжить нашу аналогию с бегунами на дорожке стадиона, то такую популяцию осцилляторов следовало бы представить в виде клуба любителей бега трусцой, тысячи членов которого вышли одновременно на беговую дорожку. Большинство этих бегунов бегут с некой средней скоростью, но в клубе есть несколько очень быстрых ребят, которые еще в школьные годы блистали на беговой дорожке, и некоторое число «тюфяков», которые после многих лет, в течение которых они вели малоподвижный образ жизни, пытаются восстановить свою былую форму. Другими словами, мы имеем дело с неким распределением естественных способностей членов клуба бегунов точно так же, как мы имеем дело с неким распределением естественных частот осцилляторов в данной биологической популяции.
Будто перечисленных выше сложностей оказалось недостаточно, нам необходимо определить еще один, последний аспект этой модели: связи между осцилляторами. Уинфри пришлось сделать предположение относительно того, кто кому кричит и кто кого слушает. Здесь наблюдается довольно широкий разброс – все зависит от того, какой биологический пример мы имеем в виду. Возьмем, к примеру, циркадные (околосуточные) ритмы. В этом случае Уинфри предположил возможность существования «стыковочных» клеток, рассредоточенных по всему телу; каждая из таких клеток в ходе суточного цикла выделяет в кровоток определенные химические вещества. Каждая клетка организма омывается смесью выделений всех остальных клеток; по сути, каждая клетка взаимодействует со всеми другими клетками. С другой стороны, сверчки уделяют наибольшее внимание сигналам, поступающим от их непосредственных соседей. А в случае осциллирующих нейронов в мозге такой клубок взаимосвязей оказался невероятно сложным.
Признав, что решить проблему связи между осцилляторами было бы невероятно трудно, Уинфри попытался уклониться от вопросов связи и решить простейший вариант этой задачи[41 - На языке статистической физики, Уинфри выполнял аппроксимацию «среднего поля».]. Что произойдет, размышлял он, если каждый осциллятор подвергается одинаковому воздействию со стороны всех остальных осцилляторов? Это было похоже на то, как если бы каждый бегун одинаково реагировал на крики всех остальных бегунов, а не только на крики тех, кто бежит рядом с ним. Или, если воспользоваться более реалистичной аналогией, представьте, что вы сидите в переполненном зрительном зале по завершении восхитительного концерта. Если зрители начнут аплодировать в унисон, вас увлечет оглушительный ритм хлопков всего зала, а не пары, сидящей рядом с вами.
Уинфри составил уравнения для своей системы осцилляторов, описывающие, как быстро каждый из этих осцилляторов будет проходить свой цикл. В любом случае скорость осциллятора определяется тремя факторами: предпочтительным для него темпом, который пропорционален его естественной частоте; его текущей чувствительностью к любым внешним воздействиям (которая зависит от того, в какой точке своего цикла он находится в данный момент); и совокупным влиянием, оказываемым всеми остальными осцилляторами (которое зависит от того, в какой точке своего цикла находятся все эти осцилляторы). Это поистине колоссальный объем «математической бухгалтерии», но, в принципе, поведение такой системы в целом на протяжении всего времени определяется текущими местоположениями всех осцилляторов. Иными словами, полное знание текущего момента позволяет полностью предсказать будущее – по крайней мере в принципе.
Соответствующее вычисление осуществляется методически. Зная текущие местоположения всех осцилляторов, мы можем с помощью уравнений Уинфри вычислить их мгновенные скорости. Эти скорости говорят нам о том, как далеко каждый из осцилляторов продвинется на следующем этапе. (Мы исходим из того, что этап представляет собой очень короткий интервал времени и что в течение этого времени все осцилляторы продвигаются неуклонно. В этом случае расстояние, преодолеваемое каждым осциллятором за время цикла, равняется его скорости, умноженной на время цикла.) Таким образом, все осцилляторы могут теперь продвинуться к своим новым фазам, а указанное вычисление повторяется снова и снова, каждый раз продвигаясь вперед на один этап. Если итерации этого процесса выполнять достаточно долго, то, по крайней мере концептуально, мы увидим, какая судьба ожидает эту совокупность осцилляторов.
То, что я только что описал, называется системой дифференциальных уравнений. С такими уравнениями нам приходится иметь дело каждый раз, когда правила для скоростей зависят от текущих положений. Задачи, подобные этой, изучаются еще со времен Исаака Ньютона (поначалу в связи с движением планет в Солнечной системе). В этом случае каждая планета притягивает все другие планеты, изменяя их местоположения, что, в свою очередь, изменяет гравитационные силы, действующие между ними, и т. д. – зеркальное отражение, во многом похожее на осцилляторы Уинфри с их постоянно изменяющимися фазами, а также с их силами воздействия и чувствительностью. Ньютон изобрел дифференциальное исчисление именно для решения сложных проблем, подобных рассматриваемой нами. Являясь автором одного из величайших достижений западной науки, он решил так называемую «задачу о двух телах» и доказал, что орбита Земли вокруг Солнца является эллиптической, как было предсказано Кеплером до него. Интересно, однако, что «задача о трех телах» оказалась совершенно
неподъемной. На протяжении двух столетий лучшие математики и физики мира пытались найти формулы, описывающие движение трех притягивающих друг друга планет, но лишь в конце XIX века французский математик Анри Пуанкаре доказал тщетность таких попыток: таких формул нет и быть не может.
С тех пор мы осознали, что большинство систем дифференциальных уравнений не имеет решения в том же самом смысле: невозможно найти формулу, которая позволяла бы получить ответ. Однако существует одно замечательное исключение: для линейных дифференциальных уравнений есть решение. Технический смысл слова линейные на данном этапе не должен интересовать нас; гораздо важнее для нас то обстоятельство, что линейные уравнения модульны по своей природе. То есть большую и запутанную линейную задачу всегда можно разделить на меньшие и более обозримые части. Каждую такую часть можно решить по отдельности, а полученные таким образом «маленькие ответы» можно воссоединить для решения более крупной задачи. Поэтому утверждение о том, что в линейной задаче целое равняется в точности сумме его частей, вообще говоря, верно.
Проблема, однако, в том, что линейным системам присуще лишь весьма примитивное поведение. Распространение инфекционных заболеваний, сильная когерентность лазерного луча, взбаламученное движение турбулентной жидкости – все эти явления описываются нелинейными уравнениями[42 - Введение в нелинейные дифференциальные уравнения можно найти в книге Steven H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Cambridge, Massachusetts. Perseus Boob, 1994).]. Когда целое отличается от суммы его составных частей (когда имеет место сотрудничество или конкуренция), уравнения, описывающие соответствующие явления, должны быть нелинейны.
Таким образом, вряд ли приходится удивляться тому, что когда Уинфри взглянул на свои дифференциальные уравнения для биологических осцилляторов, он увидел, что они нелинейны. Все линейные методы, о которых ему рассказывали на лекциях по физике и прикладным дисциплинам, в данном случае были неприменимы: он никогда не сможет найти формулы для решения этой задачи. Что же касается нелинейных методов, то те немногие, которые имелись в его распоряжении, были пригодны лишь для очень небольших систем, таких как отдельно взятый осциллятор или два связанных осциллятора. Для задачи, решение которой он пытался найти (динамика популяции, насчитывающей тысячи нелинейных осцилляторов, взаимодействующих между собой), нужно было придумать особый подход.
Чтобы имитировать работу своей модели, Уинфри использовал компьютер. То есть вместо использования чисто математического аппарата ему предстояло провести что-то наподобие эксперимента. Компьютер должен был отслеживать поведение осцилляторов по мере прохождения ими цикла за циклом с их переменными скоростями. Машине было все равно, о каких объектах – линейных или нелинейных – идет речь. От нее лишь требовалось постепенно, шаг за шагом, продвигаться вперед, обеспечивая достаточно надежную аппроксимацию истинного поведения модели, предложенной Уинфри. Уинфри надеялся, что полученные результаты подскажут ему, как должны вести себя осцилляторы. По крайней мере он мог бы увидеть, что должно происходить, даже если ему было не вполне понятно, почему это происходит именно так, а не иначе.
Вообще говоря, легко понять один ограниченный случай. Если осцилляторы полностью игнорируют друг друга, они распределяются по всей круговой дорожке, поскольку каждый из них «бежит» с предпочтительной для себя скоростью, а остальные осцилляторы не влияют на него. Более быстрые осцилляторы перегоняют более медленные осцилляторы и со временем обгоняют их на целый круг. На достаточно продолжительном отрезке времени осцилляторы будут распределены по всей дорожке. Говорят, что такая система некогерентна. Это похоже на то, как аплодируют зрители на концертах в Америке. Каждый из американских зрителей аплодирует сам по себе, не обращая внимания на соседей, – в том ритме, который подходит именно для него. В совокупности это похоже на устойчивый аритмичный шум.
Эксперименты с имитацией, проводившиеся Уинфри, зачастую приносили результаты, напоминающие именно этот вид некогерентности, даже когда осцилляторам предоставлялась возможность влиять друг на друга. При разных сочетаниях функций чувствительности и влияния популяция активно противодействовала синхронизации. Даже если все осцилляторы начинали работу строго синфазно, они нарушали согласованность своих действий и дезорганизовывались. Эта популяция настаивала на анархии.
Но в случае других пар функций чувствительности и влияния Уинфри обнаружил, что эта популяция самопроизвольно синхронизируется. Какими бы ни были начальные фазы осцилляторов, некоторые из них всегда слипались в прочный ком и бежали круг за кругом дружной компанией. В этом случае популяция вела себя подобно восточноевропейской зрительской аудитории, которая совершает синхронные хлопки без каких-либо видимых подсказок.
В подобных случаях синхронизация наступала в результате «сотрудничества» осцилляторов. Как только несколько осцилляторов входили в синхронизм (возможно, по чистой случайности), их совместные, когерентные «выкрики» начинали выделяться на фоне остального шума и оказывать более сильное влияние на все остальные осцилляторы. Это ядро начинало вербовать в свои ряды другие осцилляторы, в результате чего оно разрасталось и усиливало свой сигнал. Результирующий процесс положительной обратной связи приводил к самопроизвольному, все более ускоряющемуся процессу синхронизации, в ходе которого многие осцилляторы стремились присоединиться к формирующемуся консенсусу. Тем не менее некоторые осцилляторы оставались несинхронизированными, поскольку их естественные частоты слишком выбивались из общего ряда, чтобы их можно было вовлечь в процесс установления синхронизма. В конечном счете популяция разделялась на синхронизированную совокупность и дезорганизованную группу осцилляторов-экстремистов.
Когда в такой системе происходила самосинхронизация, Уинфри обнаруживал, что ни один из осцилляторов нельзя было обозначить как абсолютно необходимый. Иными словами, среди них не было «самого большого начальника». Любой осциллятор можно было убрать из такой системы, и это не повлияло бы на конечный результат. Кроме того, совокупность синхронно работающих осцилляторов вовсе не обязательно работала со скоростью самого быстрого из них. В зависимости от выбора функций воздействия и чувствительности эта совокупность могла действовать в ритме, ближайшем к средней скорости членов этой совокупности, или могла действовать быстрее или медленнее, чем любой из ее членов. Все это выглядело весьма парадоксально. Групповая синхронизация не носила иерархического характера, но она не всегда носила и чисто демократический характер.
Самое важное открытие Уинфри стало результатом странного и по-настоящему оригинального мысленного эксперимента. Вместо того чтобы рассматривать отдельно взятую популяцию осцилляторов, характеризующуюся одной колоколообразной кривой естественных частот, он рассмотрел целое семейство таких
популяций, каждая из которых является более однородной, чем предыдущая. Если вернуться к нашей аналогии с бегунами, представьте себе множество разных клубов любителей бега трусцой.
Первый из них чрезвычайно разнороден по своему составу: члены этого клуба весьма отличаются друг от друга по уровню своей физической подготовки. Уинфри пришел к выводу, что такой клуб никогда не достигнет синхронизма. Его члены не смогут бежать в общем для всех темпе, даже если их функции влияния и чувствительности предрасполагают бегунов к такому синхронизму. В конечном счете их способность громко кричать и хорошо слышать крики других не принесет нужного результата: разнородность этой группы возьмет верх над их взаимным желанием бежать в общем для всех темпе и разбросает их по всей длине беговой дорожки, как если бы они не обращали внимания друг на друга и каждый из них бежал в предпочтительном для себя темпе.
Теперь рассмотрим несколько более однородный клуб бегунов. Его члены характеризуются одинаковыми функциями влияния и чувствительности, но их физические способности укладываются в более узкую и высокую колоколообразную кривую (это означает, что большее количество бегунов обладают средними физическими способностями, тогда как количества «слабаков» и хороших бегунов оказываются относительно небольшими). На первый взгляд может показаться, что у такого клуба больше шансов на достижение синхронизма – по крайней мере частичного, – но Уинфри обнаружил обратный эффект. Рассматривая все более однородные популяции осцилляторов, синхронизм не удавалось выявить до достижения некой критической точки: порога разнородности. Затем, внезапно, некоторые из осцилляторов самопроизвольно синхронизировали свои частоты и начинали действовать слаженно. После того как Уинфри обеспечил еще более узкое распределение, к синхронизированной группе подключалось все большее и большее число осцилляторов.
Создавая это описание, Уинфри обнаружил неожиданную связь между биологией и физикой. Он понял, что взаимная синхронизация аналогична фазовому переходу – например, когда вода, замерзая, превращается в лед. Задумайтесь над тем, насколько удивительно явление замерзания воды. Когда температура лишь на один градус превышает точку замерзания воды, молекулы воды движутся свободно, соударяясь друг с другом и разлетаясь в стороны. При такой температуре вода представляет собой жидкость. Но давайте охладим ее чуть ниже точки замерзания. Внезапно, словно по мановению волшебной палочки, рождается новая форма материи. Триллионы молекул самопроизвольно формируют некую структуру, создавая жесткую пространственную решетку – твердый кристалл, который мы называем льдом. Аналогично, переход к синхронизму наступает резко (не постепенно), когда ширина колоколообразной кривой распределения частот оказывается меньше некоторого критического значения. Если провести аналогию с температурой, то ширина кривой распределения частот подобна температуре, а осцилляторы похожи на молекулы воды. Основное различие заключается в том, что когда осцилляторы «замораживаются» в синхронизм, они «работают» во времени, а не в пространстве. Выявление этого концептуального переключателя было творческой составляющей аналогии, использованной Уинфри.
Сделав это открытие, Уинфри выявил связь между двумя огромными корпусами знания, которые в прошлом лишь в редких случаях обращали внимание друг на друга. Одним из них является нелинейная динамика – наука о сложных путях, по которым происходит эволюция систем во времени; другим является статистическая механика – отрасль физики, которая изучает коллективное поведение гигантских систем атомов, молекул или других простых элементов. Тот и другой корпусы знания обладали достоинствами, которые компенсировали слабости другого. Нелинейная динамика хорошо подходила для малых систем с небольшим количеством переменных, но не могла справиться с большими совокупностями частиц, которые не составляли никакой проблемы для статистической механики. С другой стороны, статистическая механика хорошо подходила для анализа систем, пришедших в состояние равновесия, но не могла справиться со скачками колебательных процессов и всего остального, что изменяется во времени.
Уинфри удалось проложить путь к некой гибридной теории, которая обещала стать гораздо более мощной, чем нелинейная динамика и статистическая механика по отдельности. Это обещало стать важным шагом в развитии науки, который в конечном счете помог бы разрешить загадки спонтанного формирования порядка во времени и в пространстве. А на более практическом уровне это означало, что аналитические методы статистической физики могли теперь дать ответ на вопрос о том, как клеткам мозга, светлячкам и прочим объектам живой материи удается синхронизировать друг друга.
Спустя несколько лет о работе Уинфри стало известно молодому японскому физику по имени Йосики Курамото. Его также увлекал феномен самоорганизации во времени, и он хотел найти способ проникнуть в математическую суть этого феномена. В 1975 г. он сосредоточился на изучении более простой и абстрактной версии модели Уинфри и в конечном счете ему удалось показать, как можно решить эту задачу.
Это было поистине выдающееся достижение. Речь шла о системе бесконечно большого числа дифференциальных уравнений, причем все эти дифференциальные уравнения были нелинейными и связаны друг с другом. Такие вещи практически не поддаются решению. Немногие исключения из этого правила подобны бриллиантам. Такое сравнение представляется вполне оправданным ввиду математической красоты этих исключений, а также благодаря свету, который они проливают на внутренние аспекты нелинейности. В данном случае анализ, выполненный Курамото, выявил сущность групповой синхронизации.
На первый взгляд не так-то просто понять, что же такого особенного в структуре модели, предложенной Курамото. Как и в работе Винера, модель Курамото описывает огромную популяцию осцилляторов, характеризующуюся колоколообразной кривой распределения естественных частот; как и в модели Уинфри, каждый осциллятор одинаково взаимодействует со всеми остальными осцилляторами[43 - Оригинальным материалом – предельно краткой заметкой – является статья Y. Kuramoto, “Self-entrainment of a population of coupled nonlinear oscillators,” опубликованная в материалах международного симпозиума International Symposium on Mathematical Problems in Theoretical Physics, под ред. H. Araki (Springer-Verlag: Lecture Notes in Physics, vol. 39, 1975), pp. 420–422. Более полезная интерпретация приведена в книге Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Berlin: Springer-Verlag, 1984). Обзор этой модели и ее математический анализ, который будет полезен преподавателям, приведен в статье Steven H. Strogatz, “From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators,” Physica D 143 (2000), pp. 1–20.]. Важнейшая инновация, предложенная Курамото, заключается в замене функций влияния и чувствительности на особый вид взаимодействия – очень симметричное правило, которое воплощает и уточняет концепцию подтягивания частот, предложенную Уинфри.
Природу этого взаимодействия легче всего понять для популяции, состоящей лишь из двух осцилляторов. Вообразите их как друзей, бегущих
вместе по дорожке стадиона. Поскольку эти осцилляторы – друзья, они хотят разговаривать во время бега, поэтому каждый из них несколько корректирует предпочтительную для себя скорость бега. Правило Курамото заключается в том, что быстрый бегун несколько замедляется, а медленный бегун ускоряет свой бег в такой же степени. (Если быть более точным, величина этой коррекции является функцией синуса угла между ними, умноженного на число, называемое силой связи; это число определяет максимально возможную коррекцию.) Это корректирующее действие ведет к синхронизации осцилляторов. Однако, если разность их естественных скоростей оказывается слишком большой по сравнению с силой связи, они не смогут компенсировать разницу в своих физических способностях. Более быстрый бегун постепенно оторвется от своего более медленного товарища; в этом случае им обоим следовало бы подумать о выборе более подходящего для себя партнера по бегу трусцой. Математическая привлекательность этого правила заключается в его симметричности. В отличие от первоначальных формул Уинфри, в этом случае на беговой дорожке нет каких-либо особых мест (когда разные места соответствуют разным характерным событиям в биологическом цикле активности). Для Курамото все места неразличимы между собой. Нет никаких вех. По сути, бегуны не могут узнать, в каком именно месте они находятся, поэтому они бегут молча – никто ничего не выкрикивает, никто ни к кому не прислушивается, – но при этом они внимательно присматриваются друг к другу. Во время бега они вносят соответствующие коррективы в свою скорость, используя формулу, которая зависит лишь от расстояния между ними, а не от места на дорожке, в котором они оказались.
А теперь представьте себе гораздо большую совокупность осцилляторов и, как и ранее, представьте ее в виде клуба бегунов, члены которого весьма различаются между собой по степени физической подготовки. Правило взаимодействия заключается в том, что каждый бегун смотрит на всех остальных бегунов, подсчитывает предположительную коррекцию своей скорости относительно каждого из остальных бегунов и усредняет вычисленные таким образом величины, чтобы получить фактическую величину коррекции. Допустим, например, что в какой-то момент эти бегуны образовали достаточно плотную группу. Правило Курамото говорит лидеру забега о том, что он должен замедлить свой бег относительно предпочтительной для себя скорости, что представляется вполне благоразумным, поскольку в данный момент он опережает всех остальных бегунов. Бегуну, находящемуся в середине этой группы, поступают противоречивые сообщения: некоторые из них рекомендуют ему ускорить свой бег, тогда как согласно другим ему следовало бы замедлиться. Бегун, замыкающий эту группу, получает от своих товарищей призывы ускорить бег.
Все эти корректировки происходят раз за разом, осциллятор за осциллятором. Чтобы сделать задачу такой самокоррекции более интересной, предположим, что участники этого забега договорились начать его с произвольных мест на дорожке. Иными словами, поначалу все бегуны распределены по всей длине дорожки совершенно случайным образом.
Даже если группа сформируется, вовсе не обязательно, что самые сильные бегуны окажутся в ее главе, то есть возможна любая расстановка бегунов в группе. В течение всего времени группа будет продолжать переформировываться и, по мере того как бегуны будут занимать в ней места согласно своим физическим возможностям, будут меняться лидеры группы.
Совсем не очевидно, во что все это выльется на достаточно продолжительном отрезке времени. Самые сильные бегуны могут значительно оторваться вперед от основной группы, тогда как самые слабые бегуны будут плестись далеко в хвосте. Более того, может даже не сформироваться основная группа как таковая. Разброс скоростей бегунов может оказаться столь значительным, что бегуны распределятся по всей длине дорожки. В таком случае все они будут принимать от своих партнеров по забегу столь противоречивые сообщения («беги быстрее», «беги медленнее»), что корректировки скорости вообще прекратятся и каждый будет бежать с наиболее предпочтительной для себя скоростью.
Анализируя столь запутанную ситуацию, Курамото посчитал целесообразным количественно охарактеризовать степень синхронизации с помощью одного числа, которое он назвал параметром порядка.
Интуитивно, когда участники забега бегут плечом к плечу, это представляет собой более тесную форму синхронизма, чем в случае, когда они находятся на значительном удалении друг от друга, и поэтому заслуживают более высокого «балла за синхронизм», то есть должны характеризоваться более высоким значением параметра порядка. Числовое значение параметра порядка всегда находится в диапазоне от 0 до 1 и вычисляется с помощью математической формулы, которая зависит от относительного положения каждого из бегунов. В одном крайнем случае, когда все бегуны пребывают в идеальном синхронизме, то есть бегут «в унисон», параметр порядка равняется 1. В другом крайнем случае, когда все бегуны распределены случайным образом по всей длине беговой дорожки, параметр порядка равняется 0.
В отличие от Уинфри, Курамото не использовал компьютер, чтобы получить примерную оценку того, как такая система будет вести себя. Он полагался исключительно на свою интуицию. Это делает его догадку относительно конечного исхода еще более провидческой: Курамото предположил, что на достаточно продолжительном отрезке времени такая популяция всегда перейдет в как можно более устойчивое для себя состояние. Участники забега будут продолжать бежать, но их относительные позиции в группе не будут изменяться, поэтому параметр порядка будет оставаться неизменным. Более того, сама по себе группа выйдет на некую компромиссную скорость, определяемую членами этой группы. Курамото предположил, что эта скорость также должна оставаться постоянной.
В своем смелом математическом порыве Курамото стремился отыскать лишь такие решения своих уравнений, которые отвечали его интуитивной догадке. Если у какого-либо решения не было постоянного параметра порядка и постоянной скорости группы, такое решение не интересовало Курамото. Он знал, что ищет, а на все остальное он просто не обращал внимания. Это был весьма смелый способ рассуждений, поскольку, если бы истина находилась не там, куда двигался Курамото, руководствуясь своей интуицией, он никогда не отыскал бы эту истину. Другая опасность заключалась в том, что решений, которые интересовали Курамото, могло бы не существовать вообще. Тем не менее он предположил, что такие решения существуют, и поставил перед собой цель найти их. Чтобы обеспечить себе максимальный простор для маневра, Курамото не указал заранее, какими именно должны быть значения параметра порядка и скорости группы – они просто должны быть постоянными. Определить их значения было одной из составляющих задачи, которую ему предстояло решить.
Он пришел к выводу, что такая система может удовлетворять его требованиям двумя разными способами. Параметр порядка мог равняться нулю всегда; это означало, что соответствующая популяция абсолютно и навсегда
дезорганизована. Никакая группа в ней никогда не сформируется. Вы будете просто видеть бегунов, движущихся с самыми разными скоростями, причем эти бегуны будут рассредоточены по всей длине беговой дорожки. Такая система будет полностью рассинхронизирована. Как ни странно, это «некогерентное состояние» представляет собой исход, возможность которого нельзя исключить никогда, сколь бы разными или одинаковыми по уровню своей физической подготовки ни были участники забега. Даже если уровень физической подготовки всех участников забега одинаков, некогерентность может сохраняться все время, если она установилась изначально. Интуиция подсказывает, что участники забега не ставят перед собой цели бежать общей группой и с одинаковой скоростью, поэтому «по умолчанию» каждый из них бежит с наиболее комфортной для себя скоростью, а популяция в целом остается такой же дезорганизованной, как и прежде. Другой возможностью является «частично синхронизированное» состояние, которое характеризуется наличием трех групп: синхронизированная группа бегунов, имеющих некий средний уровень физической готовности; более медленная, рассинхронизированная стайка «слабаков»; и более быстрая, также рассинхронизированная стайка сильных бегунов. В отличие от случая некогерентности, такое состояние возможно не всегда. Курамото пришел к выводу, что существование такого состояния возможно лишь до определенного порога разнородности. Если колоколообразная кривая оказывается шире, чем этот порог (а это означает, что состав клуба бегунов чересчур разнороден), такое частично синхронизированное состояние пропадает. Из этого можно сделать вывод, что в популяции светлячков или клеток мозга осцилляторы должны быть достаточно однородны; в противном случае синхронизация вообще невозможна.
Одним махом Курамото «реабилитировал» и Винера, и Уинфри. Частично синхронизированное состояние является именно тем, что имел в виду Винер, когда он моделировал альфа-ритм мозговых волн. Узкий пик в центре спектра Винера соответствует синхронизированной группе, а «хвосты» по обе стороны от пика соответствуют рассинхронизированным осцилляторам, слишком медленным или слишком быстрым, чтобы можно было обеспечить их синхронизм с основной группой. Фазовый переход, обнаруженный Уинфри, был, по сути, то же самое, что и порог, обнаруженный Курамото. Как поняли они оба, синхронизированная группа не может образоваться, если соответствующая популяция не окажется в достаточной степени однородной. Этот важный момент Винер упустил из виду.
Курамото не только заметил этот фазовый переход, но и смог вывести точную формулу для него. Кроме того, он смог точно вычислить степень упорядоченности группы как функцию ширины колоколообразной кривой. Его формулы показали, что крошечное синхронизированное ядро зарождается при достижении порога; при этом параметр порядка едва превышает 0. По мере снижения разнородности (когда осцилляторы становятся все более похожи друг на друга) к синхронизированной группе подключается все большее число членов популяции, а параметр порядка повышается. Наконец, при достижении нулевой ширины колоколообразной кривой (все осцилляторы идентичны) формула Курамото прогнозирует состояние идеального порядка, то есть состояние полного синхронизма.
Вскоре после того как в 1986 г. мне было присвоено звание доктора философии, я начал стажироваться у Нэнси Копелл, математика из Бостонского университета[44 - Введение в ее труды, посвященные связанным осцилляторам в применении к нейробиологии, можно найти в статье Nancy Kopell, “Toward a theory of modelling central pattern generators,” помещенной в сборнике Neural Control of Rhythmic Movement in Mrtebrates, под ред. A. H. Cohen, S. Rossignol, and S. Griilner (New York: John Wiley, 1988), pp. 369–413.]. В то время Нэнси Копелл была лишь в начале своей научной карьеры. Симпатичная и веселая женщина, тонкий мыслитель и прирожденный лектор, она уже в те годы получила признание как один из лучших в мире биологов-математиков. (В частности, они вместе со своим сотрудником Бардом Эрментраутом заявили о себе во весь голос, применив новые математические методы к изучению нервной системы.) Мы несколько раз встречались с ней на научных конференциях, и она показалась мне идеальным наставником для очередного этапа в моей научной карьере, когда моя цель заключалась в углублении своей подготовки в области математики. Когда я сказал ей, что хотел бы работать над какой-либо проблемой, касающейся популяций осцилляторов, Нэнси предложила мне ознакомиться с моделью Курамото.
Результаты, полученные Курамото, привели меня в восторг. Во время учебы в магистратуре нам говорили, что большие нелинейные системы – настоящие монстры, практически не поддающиеся решению. Однако Курамото удалось найти решение для одной из таких систем – и это решение было просто блестящим. Более того, это решение показалось мне не таким уж трудным для понимания. Знакомясь с ходом рассуждений Курамото, я чувствовал себя так, словно именно я сам прихожу к таким выводам. Нэнси лишь улыбалась, слушая, с каким энтузиазмом я рассказываю о своих впечатлениях от знакомства с моделью Курамото. Затем она, как бы невзначай, указала на слабые места в рассуждениях Курамото, на все его логические нестыковки. Одним словом, здесь было к чему приложить руку молодому и многообещающему математику – такому, например, как я. Моя задача заключалась в том, чтобы поместить интуитивные догадки Курамото на более солидный математический фундамент. В течение всего следующего года я работал вместе с Нэнси, пытаясь доказать теорему, которая, по нашему общему мнению, должна быть верна. Хотя мне так и не удалось решить эту задачу, модель, предложенная Курамото, все больше увлекала меня.
Даже по окончании стажировки у Нэнси Копелл я продолжал размышлять над этой моделью на протяжении нескольких последующих лет. Аспект, который интересовал меня больше всего, касался возникновения порядка из хаоса случайности. Каким образом системе, состоящей из миллионов частиц, удается спонтанно организовать себя? В этом вопросе заключалось нечто мистическое. В нем звучали даже религиозные нотки, напоминающие мне библейскую историю рождения земной тверди из чего-то совершенно бесформенного и аморфного или, как называли это состояние древние греки, из хаоса.
Возможно, мы никогда не поймем причины возникновения порядка в реальной Вселенной, но в воображаемой вселенной модели Курамото эта задача упрощается до такой степени, что мы можем найти для нее математическое решение. Здесь возникает вопрос генезиса: каким образом некогерентность порождает синхронизм? Однажды мне пришло в голову, что существует достаточно простой способ сформулировать этот вопрос в виде упражнения на решение дифференциальных уравнений: нужно лишь рассматривать некогерентность как состояние равновесия, а затем вычислить его устойчивость.
Чтобы прояснить математический смысл таких знакомых большинству из нас понятий, как равновесие и устойчивость, рассмотрим ряд примеров из окружающего нас мира. Допустим, мы поставили стакан с водой на кухонный стол. Секунду-другую вода будет «устаканиваться», а затем придет в состояние покоя. Теперь поверхность воды в
стакане выглядит плоской и горизонтальной. Это и есть состояние равновесия – в том смысле, что в таком состоянии вода может пребывать сколь угодно долго. Такое равновесие можно также назвать устойчивым состоянием, поскольку, если немного встряхнуть стакан, а затем оставить его в покое, то поверхность воды в нем быстро вернется к исходному состоянию. Таким образом, равновесие означает, что ничего не меняется; устойчивость означает, что слабые возмущения быстро сходят на нет. Теперь рассмоторим другой пример. Возьмите карандаш и заточите его, затем поставьте этот карандаш вертикально на заточенный кончик грифеля и попытайтесь тщательно сбалансировать его. Отпустите карандаш. Если вам удалось идеально сбалансировать его, он продолжит стоять вертикально; таким образом, по определению, это состояние также является состоянием равновесия. Но совершенно очевидно, что такое состояние не является устойчивым: даже легчайшее дуновение ветерка опрокинет карандаш, после чего он уже не вернется самостоятельно в вертикальное положение.
Для модели Курамото некогерентность является состоянием равновесия: если осцилляторы каждой частоты распределены равномерно по окружности, то они навсегда останутся распределенными равномерно. Несмотря на то что осцилляторы бегут по окружности, их равномерное распределение остается неизменным. Нерешенная проблема заключалась в том, остается ли это состояние равновесия устойчивым, подобно воде в стакане, или неустойчивым, подобно карандашу, балансирующему на кончике своего грифеля. Если оно неустойчиво, это означало бы, что синхронизм мог бы возникнуть самопроизвольно и что бегуны со временем соберутся в группу.
Этот вопрос не давал покоя ученым в течение 15 лет. Сам Курамото публично признавался в этом. В своей книге он написал, что не знал, как подступиться к решению этой проблемы. Этот вопрос ставил ученых в тупик, поскольку существовало бесконечно большое множество способов некогерентной организации осцилляторов. Именно в этом заключалось главное препятствие. Некогерентность не была каким-то одним состоянием; это было семейство из бесконечно большого числа состояний.
На протяжении многих лет мне не удавалось добиться хоть какого-то успеха в решении проблемы устойчивости. Однажды поздно вечером, в момент, когда я уже был готов погрузиться в сон, у меня в голове мелькнула неожиданная идея: а что, если осцилляторы похожи не на бегунов, а на молекулы в жидкости! Точно так же как вода состоит из триллионов дискретных молекул, эта воображаемая «осцилляторная жидкость» должна состоять из триллионов дискретных точек, бегущих по окружности[45 - Steven H. Strogatz and Renato E. Mirolio, “Stability of incoherence in a population of coupled oscillators,” Journal of Statistical Physics 63 (1991), pp. 613–635.].
Вообще говоря, родившийся в моей голове образ должен был выглядеть еще более сложно и необычно. Мне нужно было вообразить множество разных жидкостей, по одной для каждой частоты, представленной в соответствующем распределении частот. Точнее говоря, бесконечно большое число разных частот, подобно сочетанию цветов в радуге. Поэтому я нарисовал в своем воображении радугу цветных жидкостей, причем все они «завихряются» вокруг одной и той же окружности, никогда не смешиваясь между собой, поскольку осцилляторы никогда не меняют свою естественную частоту. Преимущество этой психоделической картины заключается в том, что некогерентность становится единственным состоянием. Таким образом, я имею дело уже не с бесконечно большим семейством, а лишь с одним состоянием однородной плотности, причем каждая цветная жидкость равномерно распределена по всей окружности.
Я буквально выскочил из постели, схватил карандаш и бумагу. В голове засыпающего человека чаще всего возникают всевозможные фантастические картины, но идея, родившаяся в моей голове, казалась мне очень близкой к тому, что имеет место в реальности. Первым делом мне нужно было адаптировать законы механики жидкостей к моей воображаемой «осцилляторной жидкости». Затем я составил уравнения для создания стандартного теста на устойчивость: вывести систему из равновесия, решить уравнения для соответствующих возмущений (эти уравнения имеют решение, поскольку они линейны, даже если исходная система не является линейной) и проверить, нарастают ли эти возмущения или, наоборот, сходят на нет.
Составленные мною уравнения показали, что ответ зависит от того, насколько подобны между собой осцилляторы. Я нашел, что в случае, если они идентичны или почти идентичны, возмущения нарастают по экспоненциальному закону по мере того, как осцилляторы сближаются между собой по фазе, образуя зачаточную форму синхронизма. Затем родилась формула, описывающая скорость экспоненциального роста (аналогичная процентной ставке, определяющей скорость приращения суммы на вашем банковском счете). Никто до меня такой формулы не смог предложить. Это был точный прогноз, правильный или неправильный – другое дело. Наутро мне предстояло проверить свои догадки на компьютере.
У меня вспотели ладони, когда я, строка за строкой, проводил свои вычисления. Все работало! Я наблюдал рождение порядка. Затем я ненадолго остановился. Существует ли интервал критических частот, в котором скорость нарастания падает до нуля, а некогерентность уже не является неустойчивой? Да, такое критическое состояние возникает при достижении такого же порога, который был обнаружен Курамото. Это выглядело весьма убедительно. Итак, я нашел новый способ вычисления фазового перехода – точки замерзания, при которой впервые наступает синхронизация.
Через несколько часов после восхода солнца я позвонил своему сотруднику Ренни Миролло, чтобы соотщить ему приятную новость. Я начал описывать свои соображения относительно «осцилляторной жидкости», но он быстро прервал меня: «К чему вся эта софистика?» Будучи «чистым» математиком, он никогда не изучал механику жидкостей и доверял лишь уравнениям, не прибегая к помощи воображения. Мои вычисления казались ему весьма сомнительными. Но я был уверен в своей правоте. Несколько позже в тот же день я вернулся к себе в офис и убедился в том, что предсказанные мною скорости нарастания идеально совпадали с результатами компьютерного моделирования. Ренни быстро заключил мир с «осцилляторной жидкостью».
Вместе с Ренни мы решили вопрос устойчивости некогерентного состояния по другую сторону порога, где интервал частот достаточно большой, аналогично температурам выше точки замерзания. Мы ожидали, что некогерентность должна теперь стать устойчивой. Но вместо этого уравнения указывали на то, что она «нейтрально устойчива» – очень редкий, пограничный случай, когда переходные возмущения ни нарастают, ни затухают.
Вообразите, например, маленький шарик, который находится на дне чашки с полусферической формой внутренней поверхности. Если такой шарик переместить в любую другую точку на внутренней поверхности чашки, он скатится обратно на дно, которое является точкой устойчивого равновесия. Теперь допустим, что форму внутренней поверхности чашки можно регулировать: с помощью некоего рычажка вы можете постепенно делать ее более плоской (то есть придавать ей форму с меньшей
кривизной). Дно по-прежнему остается устойчивым, но все же менее, чем прежде: шарик, перемещенный в любую другую точку на внутренней поверхности чашки, медленнее скатывается в точку устойчивого равновесия. По мере того как вы все больше поворачиваете рычажок регулирования кривизны, форма внутренней поверхности чашки становится все более плоской. Когда рычажок регулирования достигнет некого критического деления, внутренняя поверхность чашки станет совершенно плоской и горизонтальной, а в результате дальнейшего изменения положения рычажка она станет похожа на выпуклую контактную линзу (слабо выраженная куполообразная форма), превратившись в конечном счете в выпуклую полусферу. В ходе такого постепенного превращения вогнутое дно чашки превратилось в куполообразную выпуклость. Теперь, если шарик слегка подтолкнуть, он скатится на край дна: состояние равновесия оказалось неустойчивым. Наш регулировочный рычажок оказался на критической границе между устойчивостью и неустойчивостью, когда контактная линза стала совершенно плоской. В этом – и только в этом – положении регулировочного рычажка равновесие нельзя назвать ни устойчивым, ни неустойчивым. Шарик находится в состоянии неопределенности; можно сказать по-другому: это состояние является нейтрально устойчивым. Если шарик сместить с этого положения нейтрального равновесия, он не вернется в исходное положение, но и не скатится в какое-то другое положение.
Как следует из этой метафоры, нейтральная устойчивость обычно имеет место лишь в переходных состояниях, при неких критических значениях параметров системы («рычажков», которые управляют ее свойствами). Но модель Курамото нарушала это правило. Ее некогерентное состояние упрямо оставалось нейтрально устойчивым, даже когда мы расширяли колоколообразную кривую, чтобы сделать популяцию более разнородной. Изменение положения нашего «рычажка» в достаточно широком диапазоне значений параметров не оказывало никакого влияния.
Мы обсудили этот необычный результат с Полом Мэтьюзом, преподавателем прикладной математики в Массачусетском технологическом институте. Пол провел ряд сеансов компьютерного моделирования, результаты которых, однако, повергли нас в еще большее недоумение. Он протестировал устойчивость другим способом, вычислив поведение параметра порядка на достаточно продолжительном отрезке времени, и обнаружил, что значение этого параметра снижается по экспоненциальному закону – что было, вообще говоря, характерным признаком устойчивости, а не нейтральной устойчивости. Теперь мы оказались по-настоящему озадаченны: некогерентность была нейтральной по одному показателю, но устойчивой по другому показателю.
Спустя несколько недель Пол читал лекцию у себя на родине, в Англии, в университете Уорвика. В ходе этой лекции он описал странные результаты, полученные нами[46 - Steven H. Strogatz, Renato E. Mirollo, and Paul C. Matthews, “Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping,” Physical Review Letters 68 (1992), pp. 2730–2733.]. Один из присутствующих на этой лекции, профессор Джордж Роуландз, сказал Полу, что на самом деле в этом результате нет ничего странного: это явление называется демпфированием Ландау[47 - Lev Landau, “On the vibrations of the electronic plasma,” Journal of Physics USSR 10 (1946), pp. 25–34. (То же на русском языке: Л. Ландау, О колебаниях электронной плазмы // ЖЭТФ 16, 574 (1946).) Элементарное введение в демпфирование Ландау можно найти в статье David Sagan, “On the physics of Landau damping,” American Journal of Physics 62 (1994), pp. 450–462.] и стало известно физикам, изучающим свойства плазмы, еще около 45 лет назад.
О свойствах плазмы нам было известно не так уж много, но все мы, конечно же, слышали о Ландау. Лев Ландау был одним из выдающихся физиков XX столетия. В эпоху узкой специализации он хорошо разбирался во всех отраслях теоретической физики, начиная с субатомных частиц и заканчивая турбулентностью в жидкостях. Он был яркой личностью, эксцентричным и вспыльчивым гением, карьера которого завершилась 7 января 1962 г., когда он попал в ужасную автокатастрофу под Москвой[48 - Isaac Asimov, Asimov’s Biographical Encyclopedia of Science and Technology (Garden City, New York: Doubleday, 1972), p. 723.]. Его тело было раздавлено, кости переломаны, многие органы серьезно повреждены. Он впал в состояние комы. В течение 100 суток его электроэнцефалограмма представляла собой практически горизонтальную линию. Врачи подключили его к аппарату для искусственного дыхания и прилагали героические усилия, пытаясь спасти ему жизнь. Четырежды констатировали его смерть, но каждый раз, буквально чудом, он возвращался к жизни. Позже в том же году он был награжден Нобелевской премией за открытия, сделанные им десятью годами ранее (он использовал квантовую теорию, чтобы объяснить необычное поведение сверхтекучего гелия при температурах, близких к абсолютному нулю). В октябре 1964 г. его выписали из больницы, однако ему так и не удалось выздороветь полностью. Он умер через несколько лет.
За свою жизнь Ландау совершил немало открытий. В частности, в конце 1940-х годов он предсказал необычные свойства плазмы. Плазму иногда называют четвертым состоянием материи, возникающим при очень высоких температурах, намного превышающих температуры, при которых материя пребывает в твердом, жидком и газообразном состояниях. Такие температуры действуют на Солнце, а также в реакторах термоядерного синтеза, где обычные атомы превращаются в ионизированный газ, состоящий из примерно равных количеств электронов и положительно заряженных ионов. Парадоксальное явление, которое в настоящее время носит имя Ландау, происходит, когда электростатические волны проходят через высоко разреженную плазму. Ландау показал, что эти волны могут затухать даже в отсутствие столкновений между частицами в плазме, а также в отсутствие какого-либо трения или рассеяния. Джордж Роуландз понял, что демпфирование Ландау описывается, по сути, тем же математическим механизмом, что и сползание в некогерентность в модели Курамото: электроны, содержащиеся в плазме, играют роль осцилляторов, а величина колебаний в генерируемом ими электрическом поле играет роль параметра порядка.
На первый взгляд кажется удивительным, что между неистовым миром сверхгорячей плазмы на Солнце, где атомы регулярно теряют свои электроны, и спокойным миром биологических осцилляторов, в котором светлячки тихо мерцают, расположившись на берегах реки, может существовать какая-то связь. Действующие лица разные, но абстрактные картины взаимодействия между ними, по сути, одинаковы. Когда эта связь была выявлена, нам удалось перенести методы Ландау на модель Курамото, раскрыв таким образом тайну, которая многие годы не давала покоя ученым. Биологии также удалось внести вклад в развитие физики. Джон Дэвид Кроуфорд, физик из Питтсбургского университета, смог применить результаты, полученные при исследовании биологического синхронизма, для решения давней проблемы, касающейся поведения плазмы[49 - Джон Дэвид Кроуфорд – блестящий ученый, занимающийся прикладной математикой. Причиной его ранней смерти стало заболевание раком. Составить некоторое представление о его выдающихся работах по связанным осцилляторам и плазме можно, ознакомившись, например, с такими статьями: John David Crawford, “Amplitude expansions for
instabilities in populations of globally-coupled oscillators,” Journal of Statistical Physics 74 (1994), pp. 1047–1084, и “Amplitude equations for electrostatic waves: Universal singular behavior in the limit of weak instability,” Physics of Plasmas 2 (1995), pp. 97–128.].
Теории взаимной синхронизации биологических осцилляторов оказались правильными с математической точки зрения. Они пролили свет на один из самых фундаментальных механизмов самоорганизации. Однако предстояло ответить на более сложный вопрос: насколько точно эти модели описывают реальность. Позволяют ли они предсказывать явления, которые согласуются с данными, описывающими реальных светлячков, клетки сердца или нейроны[50 - Недавно было объявлено о первом экспериментальном тестировании модели Курамото в системе связанных химических осцилляторов; см. Istvan Z. Kiss, Yumei Zhai, and John L. Hudson, “Emerging coherence in a population of chemical oscillators,” Science 296 (2002), pp. 1676–1678. Хадсон и его коллеги подтвердили существование фазового перехода, предсказанного Уинфри и Курамото: синхронизация внезапно наступала, как только сила связи между осцилляторами становилась выше определенного порога. Они также обнаружили, что параметр порядка (показатель степени синхронизации осцилляторов) возрастает по мере увеличения силы связи между осцилляторами, причем Курамото точно предсказал математическую зависимость между параметром порядка и силой связи. Однако о столь же точном тестировании применительно к биологическим осцилляторам еще не сообщалось.]?
Этого мы не знаем. До настоящего времени никакие тесты в этом отношении не проводились. Соответствующие эксперименты выполнить было бы очень непросто, поскольку они требуют измерений на уровне отдельно взятых животных или клеток, в частности измерений их естественных частот и их реакций на внешние воздействия разной силы и в определенные моменты времени, а также на уровне сети в целом, чтобы количественно оценить взаимодействия между осцилляторами и результирующее коллективное поведение. Особенно трудно измерить взаимодействия между парами осцилляторов. Если эти пары осцилляторов оставить в сети, то на результатах наших измерений может сказаться влияние со стороны других осцилляторов; если же эти пары осцилляторов изъять из сети, хирургическим или иным способом, то в процессе такого изъятия могут пострадать окружающие осцилляторы и соединения между ними. Кроме того, соединения внутри сетей, как правило, остаются неизвестными за исключением нескольких малых систем нейронов. Не зная, кто с кем взаимодействует, невозможно выполнить количественное тестирование моделей. Например, если на дереве расположилось множество светлячков, то вам пришлось бы точно определить, какие из них кого видят, измерить естественные частоты мерцания каждого из них и, наконец, измерить функции чувствительности и влияния каждого насекомого. Никто не пытался выполнить такой эксперимент даже для двух светлячков, не говоря уж о том, чтобы выполнить его для большой совокупности светлячков.
Тест, носящий более качественный характер, следовало бы выполнить, чтобы подтвердить или опровергнуть существование фазового перехода. Прогноз заключается в том, что степень синхронизации должна повышаться резко, а не постепенно, при превышении определенного (критического) значения либо силы связи, либо разброса частот. В этом случае проведение эксперимента также оказалось бы очень непростым делом. Чтобы изменить силу связи между светлячками, вы могли бы поместить их в затемненное помещение, а затем регулировать уровень освещенности в этом помещении с помощью реостата, чтобы насекомые могли лучше или хуже видеть друг друга. В этом нет ничего сложного, но измерить одновременно картины мерцаний у всех насекомых было бы чрезвычайно сложно. Но без такой информации мы не могли бы определить степень синхронизации и, следовательно, не могли бы определить, произошел ли переход. Аналогичный эксперимент было бы легче выполнить с нейронами, но в этом случае вам пришлось бы одновременно фиксировать сигналы от каждой клетки (что, с технической точки зрения, было бы чрезвычайно трудно); параллельно с этим вам пришлось бы дозированно вводить лекарственные препараты для постепенного устранения связей между ними и следить за тем, чтобы эти препараты не повлияли на какие-либо другие свойства этих клеток, помимо их взаимной связи. Пока еще никто не пытался провести столь сложный эксперимент.
Или можно было бы попытаться воспроизвести винеровский спектр частот, с его узким центральным пиком и «провалами» по обе стороны от пика. Это было важнейшим свидетельством в пользу его теории подтягивания частот, но, учитывая его центральную роль, мне всегда казалось странным, что я никогда не слышал о попытках такого воспроизведения. И еще кое-что казалось мне подозрительным. Если Винеру и его сотрудникам действительно удалось найти важнейшее доказательство – спектр с двойным провалом, который, по мнению Винера, является свидетельством синхронизации, – то почему он не предоставил соответствующие данные, которые говорили бы сами за себя? В своей книге «Нелинейные задачи в теории случайных процессов», опубликованной в 1958 г.[51 - В русском переводе книга вышла в 1961 году. Прим. ред.], он предложил схематическую картину спектра, которую мы видели ранее, с ее идеально симметричным пиком, возвышающимся меж двух провалов, идеально симметрично расположенных по обе стороны от пика, причем центр этой идеально симметричной картины соответствует в точности 10 циклам в секунду. Это не должно было никого ввести в заблуждение. На осях предложенной им диаграммы даже не было разметки. Впоследствии – в книге «Управление и связь в животном и машине. Новые главы кибернетики», изданной в 1961 г.[52 - В русском переводе книга вышла в 1963 году. Прим. ред.], – Винер наконец-то представил кое-какие реальные данные (предположительно, это был самый убедительный пример, имевшийся в его распоряжении), однако на рисунках отсутствовал его любимый «провал».
Несколько лет тому назад я спросил у Пола Раппа, биолога-математика и эксперта по мозговым волнам, не приходилось ли ему встречать такой спектр в своих собственных измерениях. Нет, не приходилось, но если бы такой спектр действительно существовал, то обнаружить его было бы не так уж сложно. Он провел ряд новых экспериментов, целенаправленно пытаясь обнаружить такой эффект, но даже при использовании новейших технологий его попытки не принесли желаемого результата. Неужели Винер пытался ввести нас в заблуждение? Неужели столь любимый им «провал» был лишь плодом его богатого воображения? Я не хотел верить этому, поэтому лично для меня было огромным облегчением узнать подоплеку того, что в действительности случилось в 1958 г.
Во время посещения мною конференции по прикладной математике в июле 2001 г. мне удалось поговорить с Джеком Кауэном, биологом-теоретиком, который долгое время работал над математическими моделями мозга. Рассчитывая на то, что Джек Кауэн располагает обширной информацией об альфа-ритмах, я спросил у него, знаком ли он со старой теорией Винера. Разумеется, ответил он с улыбкой. В то самое время он тоже работал в Массачусетском технологическом институте. Однажды у него состоялась продолжительная беседа с Винером, во время которой
тот прочитал ему целую лекцию об интересующем меня спектре. «Норберту вообще нравились люди, готовые слушать его долгие рассуждения».
Джек Кауэн прибыл в МТИ осенью 1958 г. и был включен в группу аспирантов, работающих под руководством Уолтера Розенблита. Примерно в то же время Маргарет Фриман, работавшая исследователем в группе Розенблита, выполнила первые измерения спектра. Именно она открыла этот пресловутый пик и двойной «провал», которые привели в восторг Винера. Несмотря на то что это были лишь предварительные результаты, Винер раструбил о них в своей книге, опубликованной в 1958 г.
К сожалению, результаты, полученные Фриман, оказались неправильными. «Другие исследователи пытались воспроизвести эти результаты, – рассказал мне Кауэн, – а когда их попытки завершились неудачей, все теоретические построения, базировавшиеся на этих результатах, оказались несостоятельными». Фриман допустила ошибку в своих вычислениях. Когда она повторила свои вычисления, двойной «провал» исчез. Впрочем, спустя три года, когда была опубликована книга «Управление и связь в животном и машине. Новые главы кибернетики», у Винера появился шанс исправить эту досадную ошибку. На этот раз он решил продемонстрировать реальные данные. Вот как он описывает этот спектр:
Когда мы анализировали эту кривую, мы обнаружили ярко выраженный провал мощности вблизи частоты, составляющей 9,05 цикла в секунду. Точка, в которой наблюдается существенное «проседание» спектра, очень резкая и характеризует объективное количественное значение, которое можно проверить с гораздо большей точностью, чем любую количественную величину, встречавшуюся до настоящего времени в электроэнцефалографии[53 - Cybernetics, pp. 190–191.].
В приведенной цитате голос Винера звучит очень уверенно. Это голос гения, который решил поучить уму-разуму специалистов по электроэнцефалографии. Но затем его речь начинает звучать гораздо осторожнее, а его высказывания носят сослагательный характер.
У нас имеются некоторые свидетельства того, что в других кривых, которые мы получили, но надежность которых вызывает определенные сомнения, это внезапное падение мощности сопровождается весьма кратковременным внезапным подъемом, в результате чего между ними наблюдается провал кривой. Так это или нет, у нас есть все основания утверждать, что мощность в пике соответствует оттягиванию мощности от участка, на котором наблюдается проседание кривой.
Когда я впервые прочитал это десять лет тому назад, я был поражен невнятностью этих высказываний. Это было так непохоже на Винера, обычно предпочитающего смелые и безапелляционные формулировки. Но когда я читаю этот отрывок сейчас, он берет меня за душу. Я будто слышу голос человека, переживающего мучительную борьбу с самим собой, – ученого, цепляющегося за идею, которая, по его твердому убеждению, должна быть правильной, и вместе с тем пытающегося найти в себе силы быть интеллектуально честным. Несмотря на то что «провал» нигде не обнаруживается, он призывает нас верить, что этот «провал» обязательно обнаружится в ходе других исследований, но он не позволяет себе «давить» на нас слишком сильно: он допускает, что результаты этих других исследований могут «вызывать определенные сомнения», и говорит, что существуют лишь «некоторые свидетельства» наличия «провала» в кривых. Есть этот «провал» или его нет, последнее предложение показывает, что Винер вовсе не был намерен отказываться от представления о том, что осцилляторы синхронизируются путем подтягивания частот друг друга. Он был уверен, что такой механизм синхронизации является универсальным. Этот механизм был обязан играть важную роль. Винер не желал пасть жертвой того, что Т. Г. Хаксли называл «великой трагедией науки – уничтожения прекрасной теории каким-нибудь отдельным безобразным фактом».
Винер напоминает мне пророка, который знает, как должен быть устроен мир. Это качество наблюдается у других великих ученых. Галилей не открыл бы, что у движущегося тела есть тенденция к продолжению движения (закон инерции), если бы он ограничился описанием того, что происходит в действительности (сила трения приводит к остановке движущегося тела). Абстрагируясь от несущественного и второстепенного, он открыл самый фундаментальный закон механики. Грегор Мендель открыл законы генетики, изучая картины наследования у бобовых культур. Некоторые современные статистики подвергают сомнению данные, полученные Менделем, называя их слишком идеальными, чтобы быть похожими на правду, тогда как другие проявляют большую снисходительность, предполагая, что Мендель скрупулезно отбирал образцы, которые лучше всего подтверждают сформулированные им принципы. Какая бы из этих версий ни казалась вам более правдоподобной, очевидно, что Мендель точно знал, что он хочет доказать.
Несмотря на то что Винер ошибался со своими выводами относительно альфа-ритма, ирония судьбы заключается в том, что он оказался прав относительно другого вида ритмов в мозге. В 1995 г. биологи Дэвид Уэлш и Стив Репперт из Массачусетского военного госпиталя обнаружили, что в мозге имеется популяция осцилляторов с распределенными естественными частотами, которые, подтягивая друг друга, достигают синхронизма и которые в совокупности образуют более точный осциллятор, чем каждый из них в отдельности[54 - У всех млекопитающих главные циркадные часы локализованы в крошечной паре нейронных кластеров, расположенных непосредственно над перекрестом зрительных нервов – местом, где происходит перекрещивание зрительных нервов на их пути к мозгу. Эти кластеры-близнецы, известные как сверх-хиазматические ядра, в совокупности содержат тысячи специализированных нейронов, которые коллективно вырабатывают электрический сигнал, который то возрастает, то снижается на протяжении суточного цикла, «оркеструя» ткани и органы в теле животного и координируя их суточные функции. Дэвид Уэлш и Стив Репперт обнаружили, что индивидуальные клетки способны к самопроизвольной осцилляции; даже когда их удаляли из мозга крысы и изолировали друг от друга, они на протяжении нескольких недель продолжали инициировать электрические разряды. В какие-то периоды суток они замолкали; в другие периоды они демонстрировали чрезвычайную активность. Изъятые из организма клетки продолжали вести себя подобно маленьким ответственным будильникам, непреклонно подавая сигнал к пробуждению животному, которое уже не нуждалось в этом. К тому же, разные клетки характеризовались разными естественными периодами, диапазон которых простирался от 20 до 25 часов. Распределение периодов имело форму, близкую к колоколообразной, хотя какой именно вид должно иметь это распределение, до сих пор неизвестно. См. D. K. Welsh, D. E. Logothetis, M. Mesker, and S. M. Reppert, “Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms,” Neuron 14 (1995), pp. 697–706.К тому же в 1997 г. Репперт и его коллеги показали, что хомяки-мутанты с быстрыми «часовыми» клетками (например, со средним периодом, составляющим 20 часов) имеют соответствующие быстрые ритмы активности: они запрыгивают в беличье колесо, установленное в их клетках, каждые 20 часов, а не раз в сутки, как обычно. Попросту
говоря, если ваши «часовые» клетки работают быстро, то вы тоже будете быстро работать. Аналогичные эксперименты с мышами показали, что периоды «часовых» клеток животного распределены более широко, чем периоды их поведенческих ритмов. Иными словами, неточные «часы» сговариваются между собой, чтобы обеспечить большую точность организма. Это наблюдение согласуется с представлением Винера о том, что в таком сочетании обеспечивается усреднение по широкому разбросу периодов отдельных составляющих этого сочетания, в результате чего достигается большая точность часов этого сочетания по сравнению с часами любой из его составляющих; см. Chen Liu, David R. Weaver, Steven H. Strogatz, and Steven M. Reppert, “Cellular construction of a circadian clock: Period determination in the suprachiasmaric nuclei,” Cell 91 (1997), pp. 855–860, а также соответствующий отчет Erik D. Herzog, Joseph S. Takahashi, and Gene D. Block, “Clock controls circadian period in isolated suprachiasmatic nucleus neurons,” Nature Neurascience 1 (1998), pp. 708–713.]. Винер предвидел все это, но упустил из виду важную деталь: вместо того чтобы генерировать колебания с частотой 10 циклов в секунду, эти клетки генерируют колебания с частотой, примерно в миллион раз меньшей. Речь идет о клетках – задатчиках циркадного ритма – внутреннего хронометра, который поддерживает нас в синхронизме с окружающим миром.
Глава 3. Сон и ежедневная борьба за синхронизм
Подобно всем новорожденным, моя дочь Леа на протяжении первых трех месяцев жизни была ярко выраженным анархистом. Она кушала и спала, когда ей заблагорассудится. Ко времени, когда ей исполнилось 11 месяцев, она уже спала всю ночь, правда, с одной небольшой проблемой: она неизменно будила меня и жену ровно в 5:20 утра. Она хваталась за поручни своей детской кроватки, принимала вертикальное положение и тактично покашливала несколько раз, словно объявляя о том, что готова позавтракать. Мы понимали, что жаловаться на судьбу нам не приходится (многие родители терпят гораздо большие лишения), но очень хотели, чтобы дочь просыпалась хотя бы на час позже. Чтобы «подтолкнуть» ее в этом направлении, однажды вечером мы попытались уложить ее спать попозже. Естественно, из этой затеи не вышло ничего хорошего: на следующее утро, ровно в 5:20, из спальни дочери раздалось то же тактичное покашливание, но поскольку на этот раз ей удалось меньше поспать, она наказала нас тем, что капризничала весь день.
Эти проблемы, связанные с отклонением от привычного режима дня, были, по сути, проблемами синхронизации. В первые дни своей жизни Леа вообще не могла синхронизироваться с окружающим миром: ее ритмы сна, бодрствования и приема пищи (в той степени, в какой они успели выработаться у нее в первые дни жизни) хаотически изменялись туда-сюда относительно мировых суточных циклов. К 11 месяцам у нее возникла противоположная проблема: теперь ее ритмы были слишком жестко синхронизированны, прочно привязаны к определенному 24-часовому графику, который мне с женой показался весьма некомфортным.
От нарушенного синхронизма и сопутствующих ему проблем со сном страдают не только младенцы и их родители. Американское общество постепенно приходит к пониманию того, что склонность подростков слишком поздно укладываться в постель и трудности с подъемом ранним утром, когда им нужно идти в школу, объясняются вовсе не чрезмерной медлительностью или «моральным разложением», а тем, что их внутренние часы настроены на другой часовой пояс, расположенный западнее часового пояса, в котором проживаем мы, взрослые[55 - Хорошим справочным материалом общего характера о сне человека и циркадных ритмах может служить следующая литература: Martin C. Moore-Ede, Frank M. Sulzman, and Charles A. Fuller, The Clocks That Time Us: Physiology of the Human Circadian Timing System (Cambridge, Massachusetts: Harvard University Press, 1982); Richard M. Coieman, Wide Awake at 3:00 AM.: By Choice or By Chance? (New York: W.H. Freeman, 1986); Arthur T. Winfree, The Timing of Biological Clocks (New York Scientific American Press, 1987).]. На другом конце спектра находятся пожилые люди, многие из которых просыпаются рано утром, задолго до восхода солнца, после чего долго не могут уснуть и чувствуют себя совершенно разбитыми.
Другие разновидности разлада синхронизма никак не связаны с возрастом. Мы сами навлекаем на себя эти проблемы, не придерживаясь определенного режима дня. Представьте себе проблемы со здоровьем и семейные проблемы, с которыми приходится сталкиваться медсестрам, водителям грузовиков, операторам атомных электростанций и людям других профессий, которым приходится работать то днем, то ночью. Техногенные катастрофы в Бхопале, Чернобыле и Три-Майл-Айленде случились в ночное время, между полуночью и 4 часами утра, и были вызваны усталостью и ошибками при принятии решений, связанными с нарушением суточного ритма организма. Все это также является побочным продуктом нарушений синхронизма, несоответствий между физическими возможностями человеческого организма и требованиями нового, «24-часового» общества.
Вы только представьте: разве это не чудо, что нам так легко удается поддерживать синхронизм с окружающим миром! Однако у слепых людей возникают немалые трудности: большинству из них не удается придерживаться 24-часового режима. Каждые две-три недели они выбиваются из фазы с остальной частью общества, к которому они принадлежат, что затрудняет им выполнение своей работы и социальных обязанностей. Вот что говорит по этому поводу одна слепая женщина: «Быть слепым не так уж страшно, хотя и возникают определенные неудобства. Ужасно, например, то, что часы сна и бодрствования у вас меняются непредсказуемым образом»[56 - «Быть слепым не так уж страшно…» Цитируется по статье Lynne Lamberg, “Blind people often sleep poorly: Research shines light on therapy,” Journal of the Amencan Medical Association 280 (October 7, 1998), p. 1123.].
Это свидетельствует лишь о том, каким благом для остальных людей является синхронизм. Разумеется, мы почти никогда не задумываемся над этим, поскольку это происходит само по себе. Миллионы лет эволюции настроили организм человека на автоматическую синхронизацию с циклами дня и ночи. Но как именно действует этот механизм? Мы говорим о «стыковочных узлах» организма, но существуют ли они в действительности или это просто фигура речи? Где они находятся: в мозге или в каждой клетке? В чем заключается их биохимический механизм? Как они синхронизируют друг друга и что подравнивает их под цикл дня и ночи? После многих десятков лет, потраченных на исследования (многие из которых тянулись слишком долго и оказались безрезультатными), ответы на некоторые из этих загадок, возможно, удастся получить в не столь отдаленном будущем. Изучение биологических часов стало одним из самых животрепещущих направлений современной науки[57 - После 40 лет сплошных разочарований биологи, исследующие циркадные ритмы, наконец начинают догадываться, как вырабатываются циркадные ритмы на молекулярном уровне. Хороший, хоть и несколько устаревший, обзор этих научных достижений приведен в статье Steven M. Reppert, “A clockwork explosion!” Neuron 21 (1998), pp. 1–4. С более современным обзором можно ознакомиться в статье Steven M. Reppert and David R. Weaver, “Molecular analysis of mammalian circadian rhythms,” Annual Review of Physiology 63 (2001), pp. 647–676.].
Наше воображение рисует картину, на которой мы представлены в виде маленьких колесиков, находящихся внутри больших колесиков; вся эта совокупность колесиков представляет собой иерархическую структуру живых осцилляторов. Можно попытаться
нарисовать еще более наглядную картину человеческого организма в виде огромного оркестра. Музыкантами в таком оркестре являются отдельные клетки, причем всем этим клеткам изначально присуще чувство 24-часового ритма. Эти исполнители сгруппированы на разных участках. Вместо струнных и духовых инструментов мы имеем дело с такими органами, как почки и печень, каждый из которых состоит из многих тысяч клеточных осцилляторов, одинаковых в пределах одного органа, но разных в разных органах, причем все они поддерживают 24-часовой биохимический ритм, но вступают в действие и замолкают в строго определенные моменты времени. Внутри каждого органа в разные периоды суток совокупности генов[58 - Kai-Florian Storch et al., “Extensive and divergent circadian gene expression in liver and heart,” Nature 417 (2002), pp. 78–83.] пребывают в активном или пассивном состоянии, обеспечивая своевременную (строго по графику!) выработку определенных протеинов соответствующего органа. В качестве дирижера этой симфонии выступает задатчик циркадного ритма сердца, нейронный «распылитель» тысяч клеток внутренних часов в мозге, которые сами синхронизированы в некий когерентный модуль.
Синхронизм возникает на трех разных уровнях. На нижнем, самом микроскопическом уровне клетки внутри определенного органа взаимно синхронизированы; их химические и электрические ритмы изменяются строго одновременно. На следующем уровне синхронизм устанавливается между разными органами[59 - Shin Yamazaki et al., “Resetting central and peripheral circadian oscillators in transgenic rats,” Science 288 (2000), pp. 682–685.] – в том смысле, что все они придерживаются одного периода, несмотря на то что клетки разных органов относятся к совершенно разным типам. Этот вид синхронизма устанавливается в организме в целом, поэтому он называется внутренней синхронизацией. Это вовсе не означает, что все органы активны в одни и те же периоды времени. Напротив, некоторые из них пребывают в покое, в то время как другие действуют на полную силу. Это синхронизм в смысле совпадения периода, поддержания одного и того же ритма точно так же, как ритм продолжает звучать в головах музыкантов, даже когда они ожидают своего вступления, начала своей партии. Наконец, третий уровень синхронизма – это синхронизм между нашим организмом и окружающим миром. Когда наш организм живет в привычном для себя режиме, бодрствуя днем и засыпая на ночь, он синхронизирован с 24-часовым ритмом смены времени суток, подчиняясь главным образом циклу света и темноты. Этот процесс внешней синхронизации, шагания в ногу с окружающим миром, называется захватом или вовлечением.
На сегодняшний день наши лучшие теории циркадных ритмов человека носят более описательный, чем математический характер. Тут уж ничего не поделаешь: у нас отсутствует глубокое понимание архитектуры и динамики этой системы. Ее иерархическая организация оказалась гораздо более сложной, чем все, что описывается простыми моделями популяций осцилляторов, обсуждавшимися выше. Сообщество светлячков можно аппроксимировать как совокупность самоподдерживающихся идентичных (или почти идентичных) и мерцающих почти одновременно осцилляторов. В этом смысле уровень сложности, ассоциирующийся с синхронными светлячками, соизмерим с уровнем сложности отдельно взятого органа или, возвращаясь к нашей аналогии с оркестром, отдельной группы инструментов. Мы лишь приступаем к изучению того, как отдельные группы инструментов играют вместе как единый оркестр и как задатчик ритма координирует и направляет их действия. Иными словами, мы пытаемся изучать правила циркадной симфонии.
Мы знаем, что такие правила существуют, поскольку мы можем наблюдать их проявления в большем масштабе, в поведении целого, всего человеческого организма: в наших повседневных ритмах сна и бодрствования, флуктуаций гормонов, пищеварения, бдительности, уровня физической активности и когнитивных способностей. На этом более высоком уровне ученые недавно обнаружили загадочные регулярности[60 - Steven H. Strogatz, The Mathematical Structure of the Human Sleep-Wake Cycle (Lecture Notes in Biomathematics, vol. 69) (New York; Springer-Verlag, 1986).] во временных графиках циклов сна и бодрствования, а также других циркадных ритмов, несмотря на то, что микроскопический базис для этих законов остается неразгаданным. В этом отношении наша нынешняя ситуация напоминает начальный период развития генетики. Мендель обнаружил, что разные характеристики бобовых культур передаются их потомству в соответствии с определенными математическими законами, и понял, что эти явления можно объяснить, допустив существование гипотетических объектов, называемых генами, которые рекомбинируют в соответствии с определенными правилами. Все это было сделано задолго до возникновения каких-либо знаний о том, что представляют собой гены в действительности, и об их физическом воплощении в нитях ДНК. Аналогично, сейчас мы знаем о том, что циркадные ритмы человека подчиняются своим собственным правилам, хотя мы по-прежнему остаемся в неведении относительно их фундаментальной биохимической основы.
Что же касается влияния синхронизма на нашу повседневную жизнь, то один из самых насущных вопросов заключается в том, как задатчик циркадного ритма влияет на сон. Эта часть загадки в значительной мере решена благодаря драматичным экспериментам, в ходе которых смелые добровольцы месяцами жили в полном одиночестве в подземных пещерах или в помещениях без окон и часов, лишенные информации о времени суток; они могли спать или бодрствовать в любое время, которое им казалось подходящим для этого. Результаты этих исследований оказались настолько странными и в то же время были переполненны столь интригующими намеками, что Арт Уинфри заявил: «В нашем распоряжении появилось нечто наподобие знаменитого камня Розетта[61 - Камень Розетта – плита с текстом на двух языках (древнеегипетском и древнегреческом) с использованием трех разных шрифтов: иероглифического, демотического (который представляет собой упрощенную форму иероглифического письма в Древнем Египте) и греческого. Ученые считают, что надпись на этой плите была сделана в 196 г. до н. э. Камень Розетта был найден в 1799 г. в небольшой деревушке Розетта (Rashid), расположенной в дельте Нила. В тексте на этом камне перечисляются великие деяния одного из египетских фараонов. Над расшифровкой этого текста, которая завершилась лишь в 1822 г., работал Жан-Франсуа Шампольон. Прим. перев.]»[62 - Arthur T. Winfree, “The tides of human consciousness: Descriptions and questions,” American Journal of Physiology 245 (1982), pp. RI63–R166.]. Расшифровка циркадного кода помогает ученым и врачам давать научно обоснованные рекомендации относительно составления щадящих графиков для работы в несколько смен и составить более четкое представление о некоторых разновидностях бессонницы, ранее недоступных для понимания. Они даже объясняли некоторые из «маленьких мистерий» жизни: например, почему у многих народов мира практикуется послеобеденная сиеста или почему нам зачастую бывает нелегко уснуть вечером в воскресенье.
Взирая 14 февраля 1972 г. на пустынный пейзаж вблизи Дель-Рио, Техас, Мишель Сиффре любовался лучами солнечного света, которые ему не придется видеть в течение ближайших шести месяцев. Затем он беззаботно улыбнулся в объективы устремленных на него телекамер,
обнял мать, обменялся прощальными поцелуями со своей женой и спустился на дно 100-футовой вертикальной шахты. Там, в недрах подземной пещеры Миднайт-Кейв (Midnight Cave), его ждала нейлоновая палатка с мебелью и холодильниками, полными еды, 780 баллонов воды (каждый из них емкостью в один галлон), а также комплекс научного оборудования.
Сиффре, французский геолог и исследователь сна, был готов к тому, чтобы выступить в роли подопытного кролика для своих собственных исследований. Ему предстояло стать непосредственным участником тщательно продуманного, всесторонне спланированного и самого необычного из когда-либо проводившихся экспериментов по изоляции человека от времени[63 - Michel Siffre, “Six months alone in a cave,” National Geographic 147 (March 1975), pp. 426–435.]. Мишель Сиффре вместе со своей командой – и при содействии НАСА – хотел изучить основные ритмы человеческой жизни в отсутствие часов, календаря и всех других «подсказок», которые могли бы обеспечивать ему привязку ко времени. Сиффре уже предпринимал такие попытки. В ходе первого такого эксперимента, проведенного десятью годами ранее и впервые в мире выполненного над человеком, он провел в полном одиночестве два месяца в холодной подземной пещере в альпийских горах, выйдя оттуда, по его собственному признанию, «полусумасшедшей марионеткой с бессвязной речью». Это суровое испытание стало первым научным свидетельством того, что у человека есть встроенные циркадные часы, цикл которых несколько превышает 24 часа.
Теперь, пребывая в постоянном безмолвии и покое пещеры Миднайт-Кейв, температура в которой никогда не отклонялась от 70 градусов по Фаренгейту[64 - Примерно 21 °C. Прим. ред.], Сиффре надеялся получить более приятные впечатления от своего эксперимента. Как бы то ни было, на этот раз все оказалось значительно хуже. В результате пребывания в полном одиночестве на протяжении шести месяцев он едва не свихнулся от постоянного напряжения. Его аудиоплеер вышел из строя, а книги покрылись плесенью до такой степени, что их невозможно было читать. Чтобы каким-то образом скрасить одиночество, он приручил крошечную мышь, соблазнив ее крошками со своего стола. Однако его дружба с мышью закончилась трагически: он нечаянно уронил на нее самодельную клетку, которую он смастерил из кастрюли. Проходили месяцы постоянной апатии, длительного сна и нарастающего раздражения. На 79-й день своего добровольного заточения Сиффре позвонил по телефону своим сотрудникам на поверхности, умоляя выпустить его на волю: “J’en ai marre!” («С меня довольно!» Ему ответили: «Да, да, все идет как нельзя лучше!» Постоянно щурясь в темноте, вдыхая пещерную пыль вперемежку с запахом экскрементов летучих мышей, Сиффре начал подумывать о самоубийстве. В последний день эксперимента природа словно услышала его мысли: он получил удар электричеством через электроды, предназначенные для записи ритмов его сердца (возможно, причиной этому стала молния, ударившая о поверхность земли, и стекание статического электричества на значительную глубину). Показателем того, насколько ухудшились его умственные способности и притупилась чувствительность, было то, что лишь с третьего удара электричеством Сиффре додумался отключить оборудование.
К счастью, эксперимент Сиффре не оказался напрасным и принес ряд впечатляющих результатов. В течение первых пяти недель своего пребывания в пещере Сиффре жил, сам того не ведая, в 26-часовом цикле. Каждый день он просыпался примерно на два часа позже и «дрейфовал» относительно времени, по которому жил окружающий его мир, в непосредственной близости от этой привязки. Во всех остальных отношениях он придерживался обычного для себя режима, пребывая в состоянии сна примерно треть времени суток.
Между тем температура его тела каждый день повышалась и понижалась, как это обычно происходит с каждым из нас. Это может показаться странным: вопреки тому, что думают многие из нас, температура тела здорового человека не держится все время на уровне 98,6 градуса по Фаренгейту[65 - 37 °C. Прим. ред.] (или на каком-то другом уровне); обычно на протяжении суток она колеблется в диапазоне 1,5 градуса, даже если мы все время лежим в постели и не напрягаемся. Еще в 1866 г. врач Уильям Огли отмечал: «Рано утром, когда мы еще спим, температура нашего тела слегка повышается, а вечером, когда мы еще бодрствуем, температура слегка понижается… Эти понижения и повышения обусловлены не изменениями освещенности в окружающем нас мире; вероятно, они вызваны периодическими изменениями активности органических функций»[66 - J. W. Ogle, “On the diurnal variations in the temperature of the human body in health,” St. George’s Hospital Reports 1 (1866), pp. 220–245. Цитируется в Moore-Ede et al. (1982), p. 14.].
Сейчас Сиффре подтверждал на практике то, о чем с такой точностью догадывался Уильям Огли более ста лет тому назад, размышляя над причинами температурного цикла тела человека. Пребывая в неизменных условиях пещеры Миднайт-Кейв, Сиффре не замечал смены времени суток и не располагал какими-либо часами за исключением внутренних ритмов своей собственной физиологии. Избавленные от влияния внешнего мира с его 24-часовым циклом, его «органические функции» – отражаемые температурой его тела – осциллировали в синхронизме с его собственным циклом сна и бодрствования с тем же 26-часовым периодом. По сути, он всегда уклдадывался спать, когда температура его понижалась, хотя он и не задумывался об этом.
На этой стадии своего эксперимента Сиффре вел себя как хомячок, или как мушка-дрозофила, или как любой другой организм, который исследовался учеными в изоляции от времени.
Цикл некоторых живых созданий бывает несколько короче 24 часов, у других – несколько продолжительнее. Этим объясняется происхождение термина циркадный ритм (circadian rhythm). Этот термин происходит от латинского circa (что означает «приблизительно») и dies (что означает «день»). Например, лабораторная мышь, которую держат в клетке и в постоянной темноте, радостно запрыгивает на свое «беличье колесо» в одно и то же время, примерно на полчаса раньше, чем в предыдущий день, и пробегает в нем несколько миль. Из этого можно сделать вывод, что циркадный ритм активности у мыши составляет 23,5 часа. Мимоза, которая растет в условиях постоянного искусственного освещения, раскрывает и закрывает свои листики с цикличностью, составляющей 22 часа. Практически все живые существа, начиная с обезьян и заканчивая микробами, демонстрируют столь же устойчивые ритмы, когда им предоставляется возможность действовать «по собственному усмотрению» в отсутствие каких-либо временных подсказок.
На 37-й день своего эксперимента Сиффре утратил сходство со всеми остальными видами. Его тело вело себя как-то странно, как-то уникально «по-человечески»: его ритмы сна и температуры тела рассинхронизировались. Он часами продолжал бодрствовать после снижения температуры своего тела, не спал почти всю ночь, после чего мог проспать 15 часов подряд, то есть почти вдвое дольше обычного для себя времени. В следующем месяце график сна и бодрствования Сиффре вел себя непредсказуемым образом, иногда возвращаясь в своему первоначальному, 26-часовому варианту, чтобы затем, совершенно неожиданно, войти в цикл сна и бодрствования продолжительностью 40 или даже 50 часов.
Однако Сиффре не отдавал себе отчета в столь значительных изменениях своего цикла сна и бодрствования. Сколь значительными ни были бы изменения, его температурный ритм никогда не выбивался из привычного 26-часового цикла.
Столь необычное явление называется самопроизвольной внутренней рассинхронизацией. Эта внутренняя рассинхронизация[67 - внутренняя рассинхронизация… J. Aschoff, “Circadian rhythms in man,” Science 148 (1965), pp. 1427–1432. Краткое изложение этой новаторской работы Юргена Ашоффа и его сотрудника Рутгера Уивера приведен в монографии Уивера The Circadian System of Man (Berlin: Springer-Verlag, 1979).] означает, что два циркандных ритма (сон и температура тела) в одном и том же организме могут идти вразнобой. С тех пор как в 1965 г. германский биолог Юрген Ашофф впервые сообщил о самопроизвольной внутренней рассинхронизации, исследователи не могли найти объяснения этому внезапному нарушению временной упорядоченности человеческого организма – тем более что у растений и животных явление самопроизвольной внутренней рассинхронизации никогда не наблюдалось. Когда Сиффре анализировал свои собственные данные, его удивлению тоже не было границ. «На первый взгляд, совершенно непредсказуемое поведение»[68 - Siffre (1975), p. 435.], – вот как он охарактеризовал этот феномен спустя три года.
Теперь мы знаем, что цикл сна и бодрствования Сиффре вовсе не был непредсказуемым. В действительности он подчинялся достаточно простым математическим правилам. Что еще более удивительно, оказалось, что те же самые правила распространяются на всех людей, поведение которых изучалось в условиях изоляции от времени. Первые признаки этой универсальной структуры были обнаружены молодым аспирантом, который работал в одной из больниц Нью-Йорка, – в то время еще новичком в науке, которому было уготовано судьбой стать впоследствии общепризнанным мировым авторитетом в исследовании циркадных ритмов человека.
В середине 1970-х годов Эллиот Вейцман вместе со своим учеником Чарльзом Чейзлером решили попробовать свои силы на проведении экспериментов с изоляцией от времени. Тогда в мире было еще лишь три группы ученых, которые работали в этой области: Сиффре во Франции, Ашофф в Германии и группа, возглавляемая Джоном Миллсом, в Англии. Это было, мягко говоря, весьма дорогостоящее и сложное предприятие, однако потенциальная польза для медицины и биологии человека была несомненна.
На пятом этаже одного из старых корпусов больницы Монтефьоре в Бронксе Вейцман и Чейзлер создали звукоизолированное помещение без окон, состоящее из трех спальных комнат и одной контрольной комнаты посередине. В местной газете они разместили объявление о найме добровольцев в надежде привлечь внимание квалифицированных рабочих, художников или аспирантов – одним словом, людей, твердо намеренных довести начатое дело до конца (таким делом мог быть какой-либо долгосрочный проект или какая-либо иная причина полностью отгородиться от окружающего мира на срок от одного до шести месяцев). Кандидатам предстояло пройти психологический отбор. Поскольку затраты на проведение этого эксперимента составляли примерно 1000 долларов в день, для его организаторов было бы крайне нежелательно, если бы по причине недостаточной психологической устойчивости у кого-то из участников «поехала крыша» и эксперимент пришлось бы свернуть досрочно.
В качестве компенсации за неудобства, вызванные спецификой этого эксперимента, его участники получали щедрое вознаграждение: им выплачивали по нескольку сотен долларов в неделю, предоставляли комфортабельное жилье и качественное питание, позволяли проводить время, как они пожелают. Они могли просыпаться и укладываться спать, когда захотят. Они могли читать книги, работать, выполнять физические упражнения или слушать музыку, могли требовать, чтобы им доставили еду. Они могли даже читать газеты и журналы при условии, что опубликованные там материалы будут относиться к давно прошедшему времени. С другой стороны, им не разрешалось носить наручные часы, звонить по телефону, слушать радио или смотреть телепередачи – одним словом, им не разрешалось пользоваться такими источниками информации, из которых они могли узнать текущее время. Цель такого «протокола изоляции от времени» заключалась в наблюдении за циркадными ритмами человека в их наиболее изначальной форме, не подверженной воздействиям окружающего мира. По тем же причинам участникам эксперимента запрещалось употреблять все, что могло нарушить нормальный ритм сна и бодрствования: пить кофе и чай, алкоголь, принимать снотворное, всевозможные стимуляторы и так называемые «рекреационные наркотики», то есть вещества, принимаемые людьми от случая к случаю для получения «кайфа», особенно в компании. (Более ранние эксперименты на животных показали, что алкоголь и кофеин способны даже «перевести» сами по себе циркадные часы, хотя этот эффект представляется весьма незначительным по сравнению с хорошо знакомым нам седативным или стимулирующим действием этих химических агентов.)
День за днем, неделя за неделей Вейцман и Чейзлер отслеживали быстроту реакций участников эксперимента, когда те бодрствовали, регистрировали мозговые волны, когда те спали, и круглосуточно измеряли температуру тела и уровни гормонов. Например, чтобы отслеживать быстро изменяющиеся профили гормона роста и гидрокортизона (гормон стресса в организме человека), они вводили постоянный катетер в руку участника на все время эксперимента, чтобы у лаборантов была возможность делать анализы микропроб крови каждые 20 минут. Между тем с помощью ректального зонда (что-то наподобие отрезка струны) выполнялись постоянные измерения температуры в прямой кишке каждого из участников эксперимента. Чтобы избежать ложных скачков температуры в процессе ее регистрации, участникам рекомендовали вынимать этот зонд во время принятия душа или когда у них возникала потребность мастурбировать.
В отличие от Сиффре в пещере, участники этого эксперимента не были социально изолированны и не страдали от каких-либо психологических травм. Им была предоставлена возможность общаться с лаборантами (в некоторых случаях между участниками эксперимента и лаборантами даже завязывалась дружба). Разумеется, персоналу приходилось быть бдительным, чтобы не проболтаться о времени суток. Например, мужчины-врачи и лаборанты всегда являлись к участникам эксперимента тщательно выбритыми, чтобы щетина на их лицах не указывала на позднее время. Члены персонала всегда здоровались с участниками эксперимента, используя слово «привет» (ни в коем случае не «доброе утро» или «добрый вечер»), а распределение их по сменам выполнялось с помощью компьютера (случайным образом), чтобы участники эксперимента не могли определить время по тому, кто из персонала сейчас находится на дежурстве. (Учитывая столь «рваный» график работы персонала, было бы не менее интересно исследовать циркадные ритмы сотрудников.)
Вот небольшой отрывок из воспоминаний одного из участников этого эксперимента.
Когда я окончил очередной год учебы в колледже, я чувствовал смертельную усталость, и участие в этом эксперименте стало для меня шансом заработать неплохие деньги. Я
потратил много времени, чтобы ликвидировать «хвосты», накопившиеся у меня за последний семестр. За месяц мне удалось сделать больше, чем за целый семестр. Я полагал, что важно придерживаться определенного режима и не опуститься, поэтому я носил рубашку с галстуком и брился каждый день. Одной из самых серьезных моих проблем было то, что я носил шерстяные брюки и не мог отгладить на них «стрелки». Поэтому я ходил в рубашке с галстуком и в шортах!
Иногда я чувствовал себя, как узник в тюрьме, променяв свою молодость на деньги. Хотя я не казался самому себе ненормальным, полагаю, что другие вполне могли принять меня за ненормального. Оказавшись, в какой-то мере, в роли заключенного, я чувствую себя вполне комфортно. Я был счастлив, как счастлив моллюск в своей раковине. Все эти лаборанты тоже кажутся мне немного странными: анализы моей мочи интересуют их больше, чем фантазии, которые роятся в моей голове.
Они берут у меня кровь на анализ каждые пятнадцать минут. В мою руку вставлен катетер, в задницу вставлен зонд, а все эти штуковины подсоединены к подвижному шесту. Первые несколько дней это слегка напрягало меня, но через неделю оно уже как бы срослось со мной, стало моей неотъемлемой частью. Мне казалось, что у меня отрос хвост…
Я никогда не знал, который сейчас час, но, по правде говоря, я даже не задумывался над этим. Правда, однажды, когда кто-то из лаборантов явился ко мне с совершенно усталым и помятым лицом, я сказал ему: «Нелегкая выдалась ночка, не правда ли?»[69 - Цитата из Coleman (1986), p. 10. Коулман приводит также другие интересные подробности, которые позволяют нам лучше понять, каково приходилось участникам эксперимента по изоляции человека от времени в больнице Монтефьоре.]
Из первых 12 «подопытных кроликов», которых изучали Вейцман и Чейзлер, шестеро пережили состояние внутренней рассинхронизации[70 - Из первых 12 «подопытных кроликов»… C. A. Czeisler, E. D. Weitzman, M. C. Moore-Ede, J. C. Zimmerman, and R. S. Knauer, “Human sleep: Its duration and organization depend on its circadian phase,” Science 210 (1980), pp. 1264–1267.]. В силу каких-то причин эти участники эксперимента раз за разом подолгу (очень подолгу!) спали и бодрствовали, то есть с ними происходило то же самое, что с Сиффре в пещере Миднайт-Кейв. У кого-то из них этот странный режим сна и бодрствования (в среднем циклы сна и бодрствования составляли у них 40 часов) поддерживался до самого окончания эксперимента. У других длительные циклы сна и бодрствования регулярно чередовались с более привычными циклами, тогда как у третьих циклы сна и бодрствования в ходе эксперимента систематически удлинялись и к концу эксперимента они спали раз в двое суток, не отдавая себе отчета в этом. Казалось, что этому невозможно найти логическое объяснение.
Чейзлер был особенно заинтригован продолжительными эпизодами сна. Почему человек спит 15 часов подряд? Можно ли это объяснить продолжительностью периода бодрствования, предшествовавшего сну? Это выглядит вполне логично: нет ничего удивительного в том, что после продолжительного периода бодрствования человеку приходится больше спать. Но когда Чейзлер построил график зависимости продолжительности сна от продолжительности периода бодрствования, предшествовавшего этому сну, он увидел унылую горизонтальную линию. Несмотря на то что статистический тест на корреляцию выявил слабую тенденцию к увеличению продолжительности сна с увеличением продолжительности периода бодрствования, предшествовавшего этому сну, эта зависимость выглядела весьма неубедительно. Внимательно анализируя полученные данные, Чейзлер смог обнаружить немало контрпримеров, когда продолжительные периоды бодрствования сопровождались более коротким сном.
Между тем круглосуточные физиологические измерения показали, что ритмы температуры тела участников эксперимента, секреции гидрокортизона и быстрота реакций всегда оставались нерушимыми, как скала, а их периодичность была немногим больше 24 часов. Как бы непредсказуемо ни вел себя цикл сна и бодрствования, эти три внутренних ритма всегда оставались на удивление стабильными. Более того, они всегда оставались взаимно синхронизированными: их периоды были идентичны. Это могло стать ключом к разгадке.
Чейзлер решил испытать другой подход. Он представил на одном графике циклы температуры тела и сна в двумерном формате, который называется растровым графиком. Биологи с Оркнейских островов уже не один десяток лет пользуются этим типом графиков. Это стандартный способ представления ритма раскрытия листьев растений или ритма мыши, которая вертится в беличьем колесе, но еще никто не пытался использовать такие графики для исследования ритмов в организме человека. Термин «растровый» применяется по аналогии с растровой разверткой в телевидении, когда в ходе процесса, называемого наложением растра, осуществляется преобразование непрерывного потока электронной информации в двумерное изображение. Аналогично, при построении растрового графика поток данных, образующихся на выходе эксперимента, преобразуется в двумерный график. В процессе наложения растра этот поток данных разделяется на 24-часовые блоки, которые затем укладываются один на другой в виде штабеля кирпичей.
День 1 находится на самом верху такого штабеля, день 2 находится непосредственно под днем 1, и т. д. вплоть до последнего дня эксперимента, который находится на самом дне штабеля. Чтобы подытожить циркадные ритмы участника эксперимента в какой-то определенный день, черный квадрат отображает часы, когда этот участник спал, а серый квадрат показывает, когда температура его тела опускалась ниже своего среднего значения. Достоинство растрового графика заключается в том, что любые повторяющиеся картины в данных буквально бросаются вам в глаза. Строгий 24-часовой ритм распознается сразу же как вертикальная полоса, состоящая из квадратов, причем все они начинаются и заканчиваются в одно и то же время суток. Ритм, более продолжительный, чем 24 часа, выглядит как диагональная полоса с наклоном вправо.
Когда Чейзлер построил растровый график для одного из рассинхронизированных участников эксперимента, он сразу же заметил, что все эпизоды продолжительного сна – которые выглядели весьма загадочно – выстроились по диагонали. То же самое произошло с эпизодами короткого сна, которые выстроились вдоль другой диагонали, причем обе эти диагонали были параллельны диагональной полосе, образованной впадиной ритма температуры тела.
Из этого следовал потрясающий вывод. Несмотря на то что цикл сна и бодрствования, на первый взгляд, не был связан с температурным циклом, налицо была постоянная, устойчивая связь между ними: эпизоды продолжительного сна всегда начинались при высокой температуре тела, а эпизоды короткого сна всегда начинались при низкой температуре. Чейзлер сверил эти результаты с результатами других участников эксперимента и оказалось, что обнаруженная им закономерность соблюдается во всех случаях. Он повторно проанализировал старые данные, опубликованные группами исследователей во Франции, Германии и Англии, и оказалось, что во всех случаях соблюдается та же закономерность.
Чейзлер разгадал циркадный код! Изучая сон в его связи с циклом
температуры тела (а не в связи со временем суток или какой-либо другой внешней переменной), он выявил естественную систему отсчета, естественную меру внутреннего времени организма человека. Если вопрос рассматривать с этой точки зрения, то данные, которые ранее казались «рваными» и «случайными», внезапно продемонстрировали стройность и организованность. Продолжительность сна человека не зависела от того, как долго он бодрствовал перед этим; она зависела от соотношения между моментом, когда этот человек уснул, и циклом температуры его тела.
Чтобы конкретизировать математическую форму этого соотношения, Чейзлер построил еще один график – график зависимости продолжительности десятков разных эпизодов сна от фазы цикла температуры человеческого тела во время сна. Другими словами, он взял все эпизоды сна, которые начинались, когда температура тела была низкой, и сгруппировал их вместе. Затем он проделал то же самое для эпизодов сна, которые начинались вблизи максимума температуры, и т. д. Это дало ему возможность сравнивать, образно говоря, яблоки с яблоками; его растровый график уже показал ему, что эпизоды сна, начинающиеся при одних и тех же фазах цикла температуры человеческого тела, должны быть одинаковыми по своей продолжительности. Чейзлер собрал данные по всем рассинхронизированным участникам своего эксперимента – кто-то из них был молодым, кто-то старым, для кого-то из них были характерны 30-часовые циклы, для кого-то 40-часовые. Несмотря на существенные индивидуальные различия во всех остальных отношениях между этими участниками эксперимента, продолжительность их сна группировалась в достаточно узком диапазоне, образуя слегка размытую версию некой универсальной математической кривой.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/stiven-strogac/ritm-vselennoy-kak-iz-haosa-voznikaet-poryadok/?lfrom=931425718) на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
notes
Сноски
1
Philip Laurent, “The supposed synchronal flashing of fireflies,” Science 45 (1917), p. 44.
2
Одно из первых упоминаний встречается в бортовом журнале экспедиции сэра Френсиса Дрейка в 1577 г.: «Наш генерал побывал на небольшом островке к югу от Целебеса (Целебес, ныне Сулавеси, – остров в Индонезии. – Прим. перев.), покрытом непроходимыми зарослями. Каждую ночь вся земля среди этих зарослей и сами заросли бывают усеяны огромным множеством насекомых (размером не больше обычной мухи), светящихся во тьме. Они испускают столь сильный свет, что каждый куст или дерево становятся похожи на пылающую свечу» [R. Hatduyt, 1589. A Selection of the Principal Voyages, Traffiques and Discoveries of the English Nation. Edited by Laurence Irving (New York; Knopf, 1926), p. 151]. Синхронный аспект этого свечения был описан гораздо подробнее в 1680 г. голландским физиком Энгельбертом Кемпфером после его путешествия по реке Мейнам, от Бангкока к морю: «Эти светящиеся насекомые, рассевшись на деревьях, создают впечатление огненного облака. Самым удивительным, однако, является то, что, рассевшись на ветвях дерева, они все вдруг одномоментно потухают, а спустя секунду-другую, так же дружно зажигаются. И такие дружные и ритмичные мерцания могут длиться часами, словно мы наблюдаем бесконечное чередование систолы и диастолы». [Engeibert Kaempfer, 1727. The History of Japan (With a Description of the Kingdom of Siam). Translated by J. G. Scheuchzer. London: Hans Sloane. Два тома в одном. См. том 1, p. 45, или pp. 78–79 тома 1 повторного издания от 1906 г., выполненного издательством J. McLehose and Sons, Glasgow.]
3
Многие из них цитируются в статье John B. Buck, “Synchronous rhythmic flashing of fireflies,” Quarterly Review of Biology 13 (1938), pp. 301–314. Эта статья является лучшим из справочников по ранней литературе, в которой освещается этот вопрос.
4
George H. Hudson, “Concerted flashing of fireflies,” Science 48 (1918), pp. 573–575.
5
Hugh M. Smith, “Synchronous flashing of fireflies,” Science 82 (1935), pp. 151–152. В этой краткой, но заслуживающей доверия статье Смит также дает одно из самых подробных описаний данного явления: «Представьте себе дерево высотой от тридцати пяти до сорока футов, плотно покрытое маленькими овальными листьями, причем на каждом листе сидит по светлячку и все листья мерцают идеально в унисон с частотой примерно три раза за две секунды, а в промежутке между вспышками дерево пребывает в полной темноте. Представьте себе берег реки протяженностью около десятой доли мили, густо поросший мангровым лесом. На каждом листке каждого дерева в этом лесу строго синхронно зажигаются и гаснут светлячки. Насекомые на деревьях, растущих на дальнем конце этого леса, мерцают идеально в унисон со светлячками, усеявшими ближние к вам деревья. Если у вас богатое воображение, то вы можете составить некоторое представление об этом восхитительном и завораживающем зрелище».
6
Joy Adamson, Living Free (London: Collins and Harvill, 1961). Цитата со стр. 29.
7
Дополнительную информацию о биохимических процессах, обусловливающих ритм мерцания, можно почерпнуть в статье Barry A. Trimmer et al., “Nitric oxide and the control of firefly flashing,” Science 292 (2001), pp. 2486–2488.
8
John Buck and Elisabeth Buck, “Mechanism of rhythmic synchronous flashing of fireflies,” Science 159 (1968), pp. 1319–1327.
9
Frank E. Hanson, James F. Case, Elisabeth Buck, and John Buck, “Synchrony and flash entrainment in a New Guinea firefly,” Science 174 (1971), pp. 161–164. Популярное изложение этой и других связанных с ней работ можно найти в статье John Buck and Elisabeth Buck, “Synchronous fireflies,” Scientific American 234 (May 1976), pp. 74–85.
10
Идея перенастраиваемого осциллятора подробно обсуждается в статье John Buck, “Synchronous rhythmic flashing of fireflies. II,” Quarterly Revtew of Biology 63 (1988), pp. 265–289, которая появилась в том же журнале и под таким же названием ровно через 50 лет после того, как был опубликован его первый обзор литературы по данному вопросу. Этот второй обзор по-прежнему представляет собой исчерпывающую подборку всего, что известно науке о синхронизации светлячков.
11
С превосходным современным обзором научной и математической литературы по синхронизации можно ознакомиться в книге Arkady Pikovsky, Michael Rosenblum, and Jurgen Kurths, Synchronization: A Universal Concept in Nonlinear Science (Cambridge, England: Cambridge University Press, 2002).
12
Одно из первый упоминаний о синхронных движениях сперматозоидов на их пути к яйцеклетке появляется в книге James Gray, Ciliary Movement (New York: Macmillan, 1928); см. так же рис. 78 на стр. 119. См. также G.I. Taylor, “Analysis of the swimming of microscopic organisms,” Proceedings of the Royal Society of London, Senes A209 (1951), pp. 447–461. Самой последней работой, в которой объясняется, как возникает синхронизм посредством механических сил, передаваемых через жидкость, является статья S. Gueron and K. Levit-Gurevich, “Computation of the internal forces in cilia: Application to ciliary motion, the effects of viscosity, and cilia interactions,” Biophysical Journal 74 (1998), pp. 1658–1676.
13
Charles S. Peskin, Mathematical Aspects of Heart Physiology (New York: Courant Institute of Mathematical Sciences Publication, 1975), pp. 268–278. В настоящее время кардиологи по-другому смотрят на то, как синхронизируются клетки-задатчики ритма. Правомерность модели Пескина доказывалась на основании предположения о том, что химическую связь между клетками-задатчиками ритма обеспечивают синапсы, тогда как в наши дни принято считать, что клетки-задатчики ритма связаны между собой электрически через нексусы (щелевые контакты), которые действуют подобно резисторам. Как таковые,
клетки-задатчики ритма пребывают в постоянной электрической связи между собой и взаимодействуют в течение всего своего цикла активности, а не только в момент активизации, как предполагал Пескин. Описание более современной модели можно найти в статье D. C. Michaels, E. P. Matyas, and J. Jalife, “Mechanisms of sinoatrial pacemaker synchronization: A new hypothesis,” Circulation Research 61 (1987), pp. 704–714.
14
Arthur T. Winfree, The Geometry of Biological Time (New York: Springer-Verfag, 1980). Указанную цитату о работе Пескина можно найти на стр. 119. Недавно Уинфри внес в свой шедевр ряд исправлений и дополнений (второе издание этой книги было опубликовано в 2001 г.), использовав формат, до которого мог додуматься только он. Цель применения этого формата заключалась в том, чтобы подчеркнуть все превратности научного прогресса. Вместо того чтобы воспользоваться хорошо известными преимуществами рассуждения «задним числом», то есть спустя 20 лет после выхода первого издания, и исправить ошибки, вкравшиеся в текст первого издания, а также убрать свои собственные ложные предположения и прогнозы, он оставил оригинальный текст неизменным и поместил новый материал в рамки, внутренняя область которых залита серым фоном, подробно комментируя те из своих старых идей, которые нуждаются в корректировке или в дополнительном разъяснении (и во многих случаях демонстрируя, насколько дальновидными оказались его выводы). Хотя временами такой формат затрудняет чтение книги, он подчеркивает, что наука представляет собой сложный, живой и развивающийся организм. (Этот эффект напомнил мне превосходную серию документальных фильмов Майкла Аптеда под общим названием “7 Up” («Спустя семь лет»). В этих фильмах у группы людей берут интервью через каждые 7 лет на протяжении всей их жизни, начиная с семилетнего возраста. Таким образом, зрителям предоставляется возможность наблюдать развитие человека на всех стадиях его жизни.)
15
Renato E. Mirollo and Steven H. Strogatz, “Synchronization of pulse-coupled biological oscillators,” SIAM (Society for Industrial and Applied Mathematics) Journal on Applied Mathematics 50 (1990), pp. 1645–1662.
16
Экспериментальные свидетельства разных стратегий перенастройки, используемых светлячками, изложены в статье Frank E. Hanson, “Comparative studies of firefly pacemakers,” Federation Proceedings 37 (1978), 2158–2164. Цель нашей математической модели никогда не заключалась в том, чтобы обеспечить большую реалистичность в этом отношении. Мы лишь хотели доказать правильность гипотезы Пескина и ссылались на светлячков как на самый наглядный пример этой абстракции, концепцию импульсно-связанных осцилляторов. Описание гораздо более достоверной с биологической точки зрения модели синхронизма светлячков можно найти в статье G. Bard Ermentrout, “An adaptive model for synchrony in the firefly Pteroptyx malaccae.” Journal of Mathematical Biology 29 (1991), pp. 571–585.
17
Одной из ранних работ, посвященных этому вопросу, была статья L. F. Abbott and C. van Vreeswijk, “Asynchronous states in neural networks of pulse-coupled oscillators,” Physical Review E 48 (1993), pp. 1483–1490.
18
John J. Hopfield, “Neurons, dynamics, and computation,” Physics Today 47 (1994), pp. 40–46; A. V. M. Herz and J. J. Hopfield, “Earthquake cycles and neural reverberations: Collective oscillations in systems with pulse-coupled threshold elements,” Physical Review Letters 75 (1995), pp. 1222–1225.
19
Сведения о самоорганизующейся критичности можно найти в книгах Per Bak, How Nature Works: The Science of Self-Organized Crincality (New York; Copernicus Books, 1999) и Mark Buchanan, Ubiquity: The Science of History… or Why the World Is Simpler Than We Think (New York: Crown, 2001).
20
С обзором литературы, которая увязывает самоорганизующуюся критичность с синхронизацией, можно ознакомиться в статье C. J. Perez, A. Corral, A. Didz-Guilera, K, Christensen, and A. Arenas, “On self-organized criticality and synchronization in lattice models of coupled dynamical systems,” International Journal of Modern Physics B 10 (1996), pp. 1111–1151.
21
См., например: Ivors Peterson, “Step in time,” Science News 140 (August 31, 1991), pp. 136–137; Ian Stewart, “All together now,” Nature 350 (1991), p. 557; Walter Sullivan, “A mystery of nature: Mangroves full of fireflies blinking in unison,” New York Times (August 13, 1991), p. C4.
22
Об истории открытия, совершенного Линн Фост, рассказывается в статье Carl Zimmer, “Fireflies in lockstep,” Discover 15 (June 1994), pp. 30–31, и в статье Susan Milius, “U.S. fireflies flashing in unison,” Science News 155 (March 13, 1999), pp. 168–170. Прекрасный материал в пересказе самих очевидцев опубликован в газете The Tennessee Conservationist: Lynn Faust, Andrew Moiseff, and Jonathan Copeland, “The night lights of Elkmont,” The Tennessee Conservationist (May/June 1998), pp. 12–15. Научный материал на эту тему можно найти в статье Andrew Moiseff and Jonathan Copeland, “Mechanisms of synchrony in the North American firefly Photinus carolinus (Coleoptera: Lampyridae),” Journal of Insect Behaviors (.1995), p. 395.
23
Dick Milne, “Govt. blows your tax $$ to study fireflies in Borneo: Not a bright idea!” National Enquirer (May 18, 1993), p. 23.
24
Sally Floyd and Van Jacobson, “The synchronization of periodic routing messages,” IEEE-ACM Transactions on Networking 2 (1994), pp. 122–136.
25
Анонимный автор, “Lighting the way. Tuberculosis sufferers are getting glowing help from the firefly,” Time (May 17, 1993), p. 25. Эта статья базируется на исследовании W. R. Jacobs et al., “Rapid assessment of drug susceptibilities of mycobacterium-tuberculosis by means of luciferase reporter phages,” Science 260 (1993), pp. 819–822.
26
Разные гипотезы относительно адаптивного значения синхронизма светлячков перечислены в статье John Buck, “Synchronous rhythmic flashing of fireflies. II,” Quarterly Review of Biology 63 (1988), pp. 265–289.
27
M. D. Greenfield and I. Roizen, “Katydid synchronous chorusing is an evolutionarily stable outcome of female choice,” Nature 364 (1993), pp. 618–620. Мысль о том, что синхронизм является отражением конкуренции, была высказана здесь применительно к кузнечикам углокрылым. Но она может относиться также к светлячкам, манящим крабам и другим живым существам.
28
Американская цикада (лат. Magicicada septendecim, семейство Cicadidae, подотряд Homoptera), личинки которой появляются в больших количествах с периодичностью, составляющей семнадцать лет (на юге – с периодичностью, составляющей тринадцать лет). Прим. перев.
29
Susan Milius, “Cicada subtleties: What part of 10,000 cicadas screeching don’t you understand?” Science News 157 (June 24, 2000), pp. 408–410. Высказывалось множество любопытных предположений относительно того, почему репродуктивные циклы цикад зачастую составляют 13 или 17 лет, но никогда 12, 14, 15, 16 или 18 лет. Объяснение, возможно, каким-то образом связано с теорией чисел. И 13, и 17 являются простыми числами (делятся только сами на себя и на 1), тогда как другие – нет. Если жизненные циклы потенциальных врагов периодических цикад составляют от 2 до 5 лет – что, по-видимому, имеет место в действительности, – то такая нумерология помогает периодическим цикадам избегать попадания в синхронизм со своими врагами. См. главу под названием “Of bamboos, cicadas, and the economy of Adam Smith” в книге Stephen Jay Gouid, Ever Since Darwin: Reflections in Natural History (Penguin Books, 1977). Альтернативную теорию, а также обзор последней литературы по «проблеме цикад» можно найти в статье Eric Goles, Oliver Schulz, and Mario Markus, “Prime number selection of cycles in a predator-prey model,” Complexity 6 (2001), pp. 33–38.
30
P. R. Y. Backwell, M. D. Jenmons, N. I. Passnsore, and J. H. Christy, “Synchronous waving in a fiddler crab,” Nature 391 (1998), pp. 31–32. Популярный материал на эту тему был опубликован в газете New York Times: Malcolm W. Browne, “Flirting male crabs found to wave claws in unison,” New York Times (January 6, 1998), p. C4.
31
Основополагающий материал по этой теме можно найти в статье Martha K. McClintock, “Menstrual synchrony and suppression,” Nature 229 (1971), pp. 244–245.
32
Анонимный автор, “Olfactory synchrony of menstrual cycles,” Science News 112 (July 2, 1977), p. 5. Оригинальный материал был опубликован спустя три года; см. статью M. J. Russell, G. M. Switz, and K. Thompson, “Olfactory influences on the human menstrual cycle,” Pharmacology Biochemistry and Behavior 13 (1980), pp. 737–738.
33
Kathleen Stern and Martha K. McClintock, “Regulation of ovulation by human pheromones,” Nature 392 (1998), pp. 177–179. Работа Макклинток, касающаяся менструального синхронизма и феромонов человека, остается весьма спорной. В статье Martha K. McClintock, “Whither menstrual synchrony?” Annual Review of Sexual Research 9 (1998), pp. 77–95, Макклинток выступает с энергичной защитой своего
мнения. См. также увлекательный и познавательный материал на эту тему в популярной книге Natalie Angier, Woman: An Intimate Geography (New York: Houghton Mifflin, 1999), pp. 170–175. Автор этой книги характеризует Макклинток как «женщину, которая носит яркие шарфы поверх кашемировых свитеров, необычные украшения, сизо-серые носки с изображениями черных рыб и излучает неизбывный энтузиазм».
34
Norbert Wiener, Cybernetics, 2
edition (Cambridge, Massachusetts: MIT Press, 1961). (Русский перевод: Н. Винер. Управление и связь в животном и машине. Новые главы кибернетики. М.: Советское радио, 1963.)
35
Обзор научных достижений Винера и небольшую подборку забавных случаев из его жизни можно найти в книге Pest R. Masani, Norbert Wiener 1894–1964 (Vita Mathematics, vol. 5), (New York Springer-Verlag, 1990).
36
В последней главе книги Cybernetics излагаются представления Норберта Винера об альфа-ритме мозговых волн и приводятся его рассуждения о самоорганизации в других системах связанных осцилляторов. (Он полагал, что это имеет какое-то отношение к вирусам, генам и раковым заболеваниям.) Более раннее изложение этих проблем, имеющее более технический характер, можно найти в книге Norbert Wiener, Nonlinear Problems in Random Theory (Cambridge, Massachusetts: MIT Press, 1958). (Русский перевод: Н. Винер. Нелинейные задачи в теории случайных процессов. М.: ИЛ, 1961.)
37
Спектр с двойным «проседанием» воспроизведен по диаграмме на стр. 69 книги Norbert Wiener, Nonlinear Problems in Random Theory (Cambridge, Massachusetts: MIT Press, 1958).
38
«Не отваживаясь высказываться…» Cybernetics, стр. 201
39
Самая ранняя его работа по групповому синхронизму, опубликованная в 1965 г., основывалась на эксперименте с массивом из 71 мигающей неоновой лампочки, которые электрически были соединены друг с другом. Уинфри называл такое приспособление «светлячковой машиной». Он писал, что его цель заключается в том, чтобы «просто посмотреть, как все это будет происходить»; см. главу 11, The Geometry of Biological Time. Вскоре он понял, что компьютерное моделирование обеспечивает гораздо большую гибкость, контроль и удобство интерпретации. Результаты этих исследований описаны в статье Arthur T. Winfree, “Biological rhythms and the behavior of populations of coupled oscillators,” Journal of Theoretical Biology 16 (1967), pp. 15–42, на которой базируется остальной материал этого раздела.
40
Для читателей, сведущих в математике или физике: возможно, вас интересует, что нового и необычного было в задаче, которую сформулировал для себя Уинфри; в частности, чем она отличается от всего того, что нам рассказывали в университетах о связанных осцилляторах. Нужно помнить, что задачи, излагаемые в учебниках, исходят из того, что осцилляторы линейны (то есть они являются простыми гармоническими осцилляторами) и связаны между собой линейными взаимодействиями (например, с помощью пружин, которые подчиняются закону Гука). В этом простом случае динамические характеристики определяются в явном виде по методу нормальных режимов. Однако Уинфри понимал, что такой подход был бы неприменим к данной биологической задаче, поскольку биологические осцилляторы не линейны. В отличие от своих линейных аналогов, которые могут совершать колебания с любой амплитудой, большинство биологических осцилляторов обязательно регулируют свою амплитуду; следовательно, лучше всего моделировать их как нелинейные самоподдерживающиеся осцилляторы с устойчивым предельным циклом. В середине 60-х годов наличная математическая теория таких объектов заканчивалась на системах из двух или трех связанных осцилляторов с предельным циклом. Никто не имел ни малейшего понятия об их популяциях, особенно если их частоты были распределены случайным образом по всей популяции. К тому же нужно понимать, что такие осцилляторы не следует путать с консервативными нелинейными осцилляторами (например, ангармоническими осцилляторами, используемыми в молекулярной динамике). Такие осцилляторы запасают энергию и могут иметь любую амплитуду – что, опять-таки, является недопустимым предположением, когда речь идет о моделировании биологических самоподдерживающихся осцилляторов.
41
На языке статистической физики, Уинфри выполнял аппроксимацию «среднего поля».
42
Введение в нелинейные дифференциальные уравнения можно найти в книге Steven H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Cambridge, Massachusetts. Perseus Boob, 1994).
43
Оригинальным материалом – предельно краткой заметкой – является статья Y. Kuramoto, “Self-entrainment of a population of coupled nonlinear oscillators,” опубликованная в материалах международного симпозиума International Symposium on Mathematical Problems in Theoretical Physics, под ред. H. Araki (Springer-Verlag: Lecture Notes in Physics, vol. 39, 1975), pp. 420–422. Более полезная интерпретация приведена в книге Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Berlin: Springer-Verlag, 1984). Обзор этой модели и ее математический анализ, который будет полезен преподавателям, приведен в статье Steven H. Strogatz, “From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators,” Physica D 143 (2000), pp. 1–20.
44
Введение в ее труды, посвященные связанным осцилляторам в применении к нейробиологии, можно найти в статье Nancy Kopell, “Toward a theory of modelling central pattern generators,” помещенной в сборнике Neural Control of Rhythmic Movement in Mrtebrates, под ред. A. H. Cohen, S. Rossignol, and S. Griilner (New York: John Wiley, 1988), pp. 369–413.
45
Steven H. Strogatz and Renato E. Mirolio, “Stability of incoherence in a population of coupled oscillators,” Journal of Statistical Physics 63 (1991), pp. 613–635.
46
Steven H. Strogatz, Renato E. Mirollo, and Paul C. Matthews, “Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping,” Physical Review Letters 68 (1992), pp. 2730–2733.
47
Lev Landau, “On the vibrations of the electronic plasma,” Journal of Physics USSR 10 (1946), pp. 25–34. (То же на русском языке: Л. Ландау, О колебаниях электронной плазмы // ЖЭТФ 16, 574 (1946).) Элементарное введение в демпфирование Ландау можно найти в статье David Sagan, “On the physics of Landau damping,” American Journal of Physics 62 (1994), pp. 450–462.
48
Isaac Asimov, Asimov’s Biographical Encyclopedia of Science and Technology (Garden City, New York: Doubleday, 1972), p. 723.
49
Джон Дэвид Кроуфорд – блестящий ученый, занимающийся прикладной математикой. Причиной его ранней смерти стало заболевание раком. Составить некоторое представление о его выдающихся работах по связанным осцилляторам и плазме можно, ознакомившись, например, с такими статьями: John David Crawford, “Amplitude expansions for instabilities in populations of globally-coupled oscillators,” Journal of Statistical Physics 74 (1994), pp. 1047–1084, и “Amplitude equations for electrostatic waves: Universal singular behavior in the limit of weak instability,” Physics of Plasmas 2 (1995), pp. 97–128.
50
Недавно было объявлено о первом экспериментальном тестировании модели Курамото в системе связанных химических осцилляторов; см. Istvan Z. Kiss, Yumei Zhai, and John L. Hudson, “Emerging coherence in a population of chemical oscillators,” Science 296 (2002), pp. 1676–1678. Хадсон и его коллеги подтвердили существование фазового перехода, предсказанного Уинфри и Курамото: синхронизация внезапно наступала, как только сила связи между осцилляторами становилась выше определенного порога. Они также обнаружили, что параметр порядка (показатель степени синхронизации осцилляторов) возрастает по мере увеличения силы связи между осцилляторами, причем Курамото точно предсказал математическую зависимость между параметром порядка и силой связи. Однако о столь же точном тестировании применительно к биологическим осцилляторам еще не сообщалось.
51
В русском переводе книга вышла в 1961 году. Прим. ред.
52
В русском переводе книга вышла в 1963 году. Прим. ред.
53
Cybernetics, pp. 190–191.
54
У всех млекопитающих главные циркадные часы локализованы в крошечной паре
нейронных кластеров, расположенных непосредственно над перекрестом зрительных нервов – местом, где происходит перекрещивание зрительных нервов на их пути к мозгу. Эти кластеры-близнецы, известные как сверх-хиазматические ядра, в совокупности содержат тысячи специализированных нейронов, которые коллективно вырабатывают электрический сигнал, который то возрастает, то снижается на протяжении суточного цикла, «оркеструя» ткани и органы в теле животного и координируя их суточные функции. Дэвид Уэлш и Стив Репперт обнаружили, что индивидуальные клетки способны к самопроизвольной осцилляции; даже когда их удаляли из мозга крысы и изолировали друг от друга, они на протяжении нескольких недель продолжали инициировать электрические разряды. В какие-то периоды суток они замолкали; в другие периоды они демонстрировали чрезвычайную активность. Изъятые из организма клетки продолжали вести себя подобно маленьким ответственным будильникам, непреклонно подавая сигнал к пробуждению животному, которое уже не нуждалось в этом. К тому же, разные клетки характеризовались разными естественными периодами, диапазон которых простирался от 20 до 25 часов. Распределение периодов имело форму, близкую к колоколообразной, хотя какой именно вид должно иметь это распределение, до сих пор неизвестно. См. D. K. Welsh, D. E. Logothetis, M. Mesker, and S. M. Reppert, “Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms,” Neuron 14 (1995), pp. 697–706.
К тому же в 1997 г. Репперт и его коллеги показали, что хомяки-мутанты с быстрыми «часовыми» клетками (например, со средним периодом, составляющим 20 часов) имеют соответствующие быстрые ритмы активности: они запрыгивают в беличье колесо, установленное в их клетках, каждые 20 часов, а не раз в сутки, как обычно. Попросту говоря, если ваши «часовые» клетки работают быстро, то вы тоже будете быстро работать. Аналогичные эксперименты с мышами показали, что периоды «часовых» клеток животного распределены более широко, чем периоды их поведенческих ритмов. Иными словами, неточные «часы» сговариваются между собой, чтобы обеспечить большую точность организма. Это наблюдение согласуется с представлением Винера о том, что в таком сочетании обеспечивается усреднение по широкому разбросу периодов отдельных составляющих этого сочетания, в результате чего достигается большая точность часов этого сочетания по сравнению с часами любой из его составляющих; см. Chen Liu, David R. Weaver, Steven H. Strogatz, and Steven M. Reppert, “Cellular construction of a circadian clock: Period determination in the suprachiasmaric nuclei,” Cell 91 (1997), pp. 855–860, а также соответствующий отчет Erik D. Herzog, Joseph S. Takahashi, and Gene D. Block, “Clock controls circadian period in isolated suprachiasmatic nucleus neurons,” Nature Neurascience 1 (1998), pp. 708–713.
55
Хорошим справочным материалом общего характера о сне человека и циркадных ритмах может служить следующая литература: Martin C. Moore-Ede, Frank M. Sulzman, and Charles A. Fuller, The Clocks That Time Us: Physiology of the Human Circadian Timing System (Cambridge, Massachusetts: Harvard University Press, 1982); Richard M. Coieman, Wide Awake at 3:00 AM.: By Choice or By Chance? (New York: W.H. Freeman, 1986); Arthur T. Winfree, The Timing of Biological Clocks (New York Scientific American Press, 1987).
56
«Быть слепым не так уж страшно…» Цитируется по статье Lynne Lamberg, “Blind people often sleep poorly: Research shines light on therapy,” Journal of the Amencan Medical Association 280 (October 7, 1998), p. 1123.
57
После 40 лет сплошных разочарований биологи, исследующие циркадные ритмы, наконец начинают догадываться, как вырабатываются циркадные ритмы на молекулярном уровне. Хороший, хоть и несколько устаревший, обзор этих научных достижений приведен в статье Steven M. Reppert, “A clockwork explosion!” Neuron 21 (1998), pp. 1–4. С более современным обзором можно ознакомиться в статье Steven M. Reppert and David R. Weaver, “Molecular analysis of mammalian circadian rhythms,” Annual Review of Physiology 63 (2001), pp. 647–676.
58
Kai-Florian Storch et al., “Extensive and divergent circadian gene expression in liver and heart,” Nature 417 (2002), pp. 78–83.
59
Shin Yamazaki et al., “Resetting central and peripheral circadian oscillators in transgenic rats,” Science 288 (2000), pp. 682–685.
60
Steven H. Strogatz, The Mathematical Structure of the Human Sleep-Wake Cycle (Lecture Notes in Biomathematics, vol. 69) (New York; Springer-Verlag, 1986).
61
Камень Розетта – плита с текстом на двух языках (древнеегипетском и древнегреческом) с использованием трех разных шрифтов: иероглифического, демотического (который представляет собой упрощенную форму иероглифического письма в Древнем Египте) и греческого. Ученые считают, что надпись на этой плите была сделана в 196 г. до н. э. Камень Розетта был найден в 1799 г. в небольшой деревушке Розетта (Rashid), расположенной в дельте Нила. В тексте на этом камне перечисляются великие деяния одного из египетских фараонов. Над расшифровкой этого текста, которая завершилась лишь в 1822 г., работал Жан-Франсуа Шампольон. Прим. перев.
62
Arthur T. Winfree, “The tides of human consciousness: Descriptions and questions,” American Journal of Physiology 245 (1982), pp. RI63–R166.
63
Michel Siffre, “Six months alone in a cave,” National Geographic 147 (March 1975), pp. 426–435.
64
Примерно 21 °C. Прим. ред.
65
37 °C. Прим. ред.
66
J. W. Ogle, “On the diurnal variations in the temperature of the human body in health,” St. George’s Hospital Reports 1 (1866), pp. 220–245. Цитируется в Moore-Ede et al. (1982), p. 14.
67
внутренняя рассинхронизация… J. Aschoff, “Circadian rhythms in man,” Science 148 (1965), pp. 1427–1432. Краткое изложение этой новаторской работы Юргена Ашоффа и его сотрудника Рутгера Уивера приведен в монографии Уивера The Circadian System of Man (Berlin: Springer-Verlag, 1979).
68
Siffre (1975), p. 435.
69
Цитата из Coleman (1986), p. 10. Коулман приводит также другие интересные подробности, которые позволяют нам лучше понять, каково приходилось участникам эксперимента по изоляции человека от времени в больнице Монтефьоре.
70
Из первых 12 «подопытных кроликов»… C. A. Czeisler, E. D. Weitzman, M. C. Moore-Ede, J. C. Zimmerman, and R. S. Knauer, “Human sleep: Its duration and organization depend on its circadian phase,” Science 210 (1980), pp. 1264–1267.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Здесь представлен ознакомительный фрагмент книги.Для бесплатного чтения открыта только часть текста (ограничение правообладателя). Если книга вам понравилась, полный текст можно получить на сайте нашего партнера.