Смотри, что у тебя внутри. Как микробы, живущие в нашем теле, определяют наше здоровье и нашу личность
Роб Найт
TED Books
Мы живем в эпоху настоящей революции в микробиологии. Новейшие технологии позволили ученым погрузиться в мир микроскопических существ, населяющих наше тело, и сделать в этом мире поразительные открытия. Оказывается, микробы, в немыслимых количествах обитающие почти в каждом уголке нашего организма, играют куда более важную роль, чем мы думали раньше: от них зависит не только наше физическое здоровье, они определяют наше настроение, наши вкусы и саму нашу личность. Мы узнаем об этих научных прорывах из первых рук: автор книги Роб Найт – один из ведущих современных микробиологов, на наших глазах создающий науку будущего.
Роб Найт
Смотри, что у тебя внутри. Как микробы, живущие в нашем теле, определяют наше здоровье и нашу личность
Follow Your Gut
The Enormous Impact of Tiny Microbes
ROB KNIGHT
WITH BRENDAN BUHLER
TED, the TED logo, and TED Books are trademarks of TED Conferences, LLC
TED BOOKS and colophon are registered trademarks of TED Conferences, LLC
Cover and interior design by MGMT. design Illustrations by Olivia de Salve Villedieu
© 2015 by Rob Knigth. All rights reserved.
© Е. Валкина, перевод на русский язык, 2015
© ООО “Издательство АСТ”, 2015
Издательство CORPUS ®
* * *
Моим родителям, Элисон и Джону, – с благодарностью за их гены, их идеи и их микробов
Предисловие
Мы знаем, кто вы такой: человеческое существо, двуногое животное с бесконечными возможностями разума, наследник всего сущего, никогда не прочитавший до конца ни одного пользовательского соглашения – просто поставьте, где надо, галочку. А теперь знакомьтесь, это тоже вы: триллионы мельчайших существ, обитающих в ваших глазах, ушах и обширных поместьях, именуемых вашим кишечником. И этот внутренний микромир может перевернуть ваше понимание ваших болезней, вашего здоровья и самого себя.
Благодаря новым технологиям (многие из них были разработаны за последние несколько лет) ученые сегодня знают о микроскопических формах жизни внутри нас больше, чем когда-либо прежде. И то, что мы узнаём, поразительно. Эти одноклеточные организмы – микробы – оказались не только гораздо многочисленнее, чем мы думали, они в немыслимых количествах обитают почти в каждом уголке нашего тела и играют куда более важную роль, чем мы когда-либо могли себе представить: от них зависят очень многие стороны нашего здоровья и даже нашей личности.
Собрание микроскопических тварей, для которых наш организм служит домом, называется микробиотой человека (иногда также – микрофлорой и микрофауной), а совокупность их генов – человеческим микробиомом. И, как это часто бывает с научными открытиями, новые факты о микромире заставляют нас смирить наше эго. Астрономия уже объяснила нам, что наша планета – вовсе не центр Вселенной, эволюция научила нас, что человек – лишь один из видов животных. Составление человеческого микробиома учит нас, что в доме нашего тела наш собственный голос тонет в хоре независимых (и взаимозависимых) форм жизни с их собственными устремлениями и программами.
Сколько же всего внутри нас микроорганизмов? Вы состоите из приблизительно десяти триллионов человеческих клеток – но в вашем теле содержится около ста триллионов микробных клеток[1 - Следует отметить, что последний доклад Американской академии микробиологии снижает это соотношение до 3:1 в основном за счет увеличения числа подсчитанных клеток человека. Но в любом случае численный перевес на стороне микробов. См.: http://academy.asm.org/index.php/faq-series/5122humanmicrobiome (http://academy.asm.org/index.php/faq-series/5122humanmicrobiome).]. То есть вы – это в огромной степени не вы.
Но это не значит, что человек – всего лишь вместилище крошечных созданий, случайно попавших внутрь его тела и разносящих заболевания. На самом деле мы живем в равновесии со всем сообществом населяющих нас микроорганизмов. Их роль не сводится к роли пассивных пассажиров – они участвуют в фундаментальных жизненных процессах, включая пищеварение, иммунные реакции и даже поведение.
Совокупность микробов внутри нас представляет нечто вроде объединения различных сообществ. Разные части организма населяют различные группы видов, имеющие специализированные функции. Микробы, живущие во рту, отличаются от тех, которые живут на коже или в кишечнике. Мы не просто отдельные личности; каждый из нас – экосистема.
Разнообразие микроорганизмов помогает объяснить даже такие индивидуальные особенности, которые мы привыкли списывать на случайность или невезение. Скажем, почему некоторых из нас так любят комары? Например, меня эти маленькие демоны почти не кусают, в то время как на мою подругу Аманду они летят, как пчелы на мед. Оказывается, некоторые из нас действительно вкуснее с точки зрения комаров, и главная причина столь избирательной “аппетитности” – различия в составе микробных сообществ, обитающих на нашей коже (подробнее об этом – в главе 1).
И это еще не все: разнообразие микробов, которые живут на нас и внутри нас, просто потрясает. Вероятно, вам приходилось слышать, что если сравнивать ДНК, то все мы, люди, примерно одинаковы: наш геном на 99,99 % совпадает с геномом любого другого человека, например вашего соседа. Но это не касается микрофлоры вашего кишечника: здесь могут совпадать всего 10 % микробов.
Этим можно объяснить огромные различия между людьми – от разницы в весе до непохожих аллергий, от вероятности заболеть до уровня тревожности. Мы еще только начинаем систематизировать – и понимать – этот необозримый микромир, но выводы первых исследований уже ошеломляют.
Бесконечное разнообразие мира микробов особенно впечатляет, если учесть, что каких-то сорок лет тому назад мы понятия не имели, насколько многочисленны одноклеточные организмы и какое невероятное количество видов они насчитывают. До этого основные принципы классификации живых организмов основывались на книге Чарльза Дарвина “Происхождение видов”, увидевшей свет в 1859 году[2 - Доступно онлайн: проект “Гутенберг”, www.gutenberg.org/files/1228/1228-h/1228-h.htm (http://www.gutenberg.org/files/1228/1228-h/1228-h.htm).]. Дарвин изобразил древо эволюции, сгруппировав все организмы по общим физическим признакам: короткоклювые вьюрки, длинноклювые вьюрки и так далее; и в течение долгого времени этот принцип оставался основой классификации и систематики.
Традиционные представления о жизни базировались на том, что люди могли увидеть в окружающем их мире – невооруженным глазом или в микроскоп. Более крупные организмы были поделены на растения, животные и грибы. Оставшиеся одноклеточные организмы попали в две крупные категории: протисты (простейшие) и бактерии. Что касается растений, животных и грибов, мы были правы. Но вот наши представления об одноклеточных оказались абсолютно ошибочными.
В 1977 году американские микробиологи Карл Вёзе и Джордж Э. Фокс предложили новый вариант “древа жизни”, основанный на сравнении различных форм жизни на клеточном уровне с использованием рибосомной рибонуклеиновой кислоты – родственницы ДНК, которая присутствует в любой клетке и участвует в синтезе белков. Картина была ошеломляющей. Вёзе и Фокс обнаружили, что одноклеточные организмы более
разнообразны, чем все растения и животные, вместе взятые. Как выяснилось, животные, растения, грибы; все люди, медузы, навозные жуки; любая нить водорослей, любой клочок мха, устремленные вверх калифорнийские секвойи; все лишайники и лесные грибы – все живое, что мы видим вокруг, – это всего лишь три отростка на конце одной ветви эволюционного древа. Основные же его обитатели – одноклеточные организмы: бактерии, археи (которые были впервые выделены в виде отдельной группы Вёзе и Фоксом), дрожжи и некоторые другие формы жизни.
Только за последние несколько лет в понимании микрожизни внутри нас произошел прорыв, которым мы обязаны новым технологиям, в первую очередь совершенствованию секвенирования ДНК и взрывному увеличению мощности компьютеров. Сегодня при помощи процесса, который называется секвенированием нового поколения, мы можем получать образцы клеток из различных частей организма, быстро анализировать содержащиеся в них микробные ДНК, сравнивать и объединять с информацией из других органов, чтобы идентифицировать тысячи видов микроорганизмов, которые считают наше тело своим домом. Таким образом мы обнаруживаем бактерии, археи, дрожжевые грибы и другие одноклеточные организмы (в частности, эукариоты), совокупный геном которых длиннее нашего собственного.
Ну а новые компьютерные алгоритмы, в свою очередь, значительно упрощают и облегчают интерпретацию этой генетической информации. В частности, теперь мы можем составить микробную карту тела, позволяющую сравнивать сообщества микроорганизмов в различных частях тела и у различных людей. Огромная часть этой информации получена в рамках проекта “Микробиом человека” (Human Microbiome Project), осуществленного под эгидой Национальных институтов здравоохранения США (US National Institutes of Health, NIH). Стоимость исследования составила 170 миллионов долларов, в нем участвовало более двухсот ученых, которые на сегодняшний день собрали и проанализировали не менее 4,5 терабайт данных. И это только начало; другие международные проекты, такие как “Исследование состава биоты желудочно-кишечного тракта человека” (Metagenomics of the Human Intestinal Tract Consortium, MetaHIT), постоянно добавляют и анализируют новые данные.
Стоимость этих анализов все время снижается, благодаря чему все больше людей могут сделать полную перепись живущих в их организмах микробов. Десять лет назад, чтобы проанализировать свой микробиом, вам пришлось бы заплатить сто миллионов долларов. Сегодня подобная информация обойдется всего лишь в сотню баксов – настолько дешево, что врачи скоро станут назначать такие исследования как рутинную медицинскую процедуру.
Но почему же врачам интересен состав вашего микробиома? Потому что появляются все новые и новые исследования, доказывающие связь между нашими микробами и многими нашими заболеваниями, включая ожирение, артрит, аутизм и даже депрессию. А эта связь, в свою очередь, сразу же открывает новые перспективы лечения.
Что только не влияет на наш микробиом – лекарства, диета, количество сексуальных партнеров, даже то, первый ли вы ребенок у своих родителей! Читая последующие страницы, вы убедитесь, что микроорганизмы глубоко включены практически во все аспекты нашей жизни. Они и впрямь заставляют нас по-иному взглянуть на вопрос: “Что же это значит – быть человеком?”
1. Микроорганизмы нашего тела
Итак, попробуем оценить, сколько же микробов обитает внутри нас.
Если считать по массе, то в теле взрослого человека их в среднем около полутора килограммов. Это делает вашу микробиоту одним из самых крупных органов, который по весу соперничает с мозгом и лишь немного уступает печени.
Мы уже знаем, что по абсолютному числу клеток микроорганизмы выигрывают у человека в соотношении десять к одному. А что, если мы сравним наши ДНК? У каждого из нас примерно двадцать тысяч человеческих генов. И в то же время мы несем от двух до двадцати миллионов микробных генов. Это означает, увы, что с точки зрения генетики мы по крайней мере на 99 % являемся микробами!
Чтобы вам было не так обидно, взгляните на это с точки зрения сложности устройства человека. В каждой клетке человека содержится гораздо больше генов, чем в микробной. Просто в вашем организме так много микробов, что в сумме все их гены перевешивают ваши.
Организмы, которые живут в нас и на нас, очень разнообразны. Большинство из них (но не все) – одноклеточные. Они представляют все три основные ветви эволюционного древа. В кишечнике живут представители царства археи – одноклеточные организмы, не имеющие ядер; самые распространенные из них – метаногены, которые существуют без кислорода, помогают переваривать пищу и выделяют газ метан (у коров они тоже есть).
Далее идут эукариоты: грибки микозов кожи и дрожжевые грибки, которые создают колонии в вагине и иногда в кишечнике. Но доминируют над всеми бактерии – например, эшерихия коли (Escherichia coli), кишечная палочка, которая у нас ассоциируется прежде всего с расстройством желудка, случающимся из-за плохо промытой зелени. Однако безвредные и полезные разновидности этой бактерии практически всегда присутствуют в наших внутренностях.
И каждый день благодаря новым технологиям мы узнаем, что этот мир еще разнообразнее, чем нам казалось раньше. Это как если бы мы прошли по океану с тралом с очень крупными ячейками, а потом, осмотрев улов, заключили бы, что в море водятся лишь киты и гигантские кальмары. Теперь же мы открыли, что жизнь у нас внутри гораздо более многообразна. Например, вы можете предположить, что любые две бактерии у вас в кишечнике, набросившиеся на ваш последний бутерброд, очень похожи друг на друга, как, скажем, анчоусы или сардины. Но на самом деле у них не больше общего, чем у морского огурца (голотурии) и большой белой акулы: это два существа с абсолютно разными поведением, пищей и экологической ролью.
Итак, где находятся все наши микробы и какова их роль? Чтобы узнать это, давайте совершим экскурсию по нашему телу.
Кожа
Говорят, Наполеон, возвращаясь из военного похода, писал императрице Жозефине: “Буду в Париже завтра вечером. Не принимай ванну”. Он предпочитал естественный запах своей обожаемой супруги, причем концентрированный. Но почему же, когда мы на какое-то время остаемся без мыла, дезодорантов, пудры и духов, от нас начинает так плохо пахнуть? Главным образом из-за микробов, которые питаются нашими выделениями и делают их еще более пахучими.
Ученые до сих пор пытаются, извините за каламбур, разнюхать, какой практической цели служит деятельность существ, обитающих на самом обширном нашем органе – коже. Одно известно точно: они вносят вклад в формирование запаха нашего тела, включая и те компоненты этого запаха, которые привлекают комаров[3 - N. O. Verhulst et al., “Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes,” PloS One 6, no. 12 (2011): e28991.]. Как уже отмечалось, кровососущие насекомые действительно предпочитают запахи одних людей другим, и виноваты в этом микробы. Они расщепляют вещества, которые выделяет кожа, на летучие соединения, которые могут нравиться или не нравиться комарам. Причем разные виды комаров предпочитают
различные участки наших тел. Например, для Anopheles gambiae, одного из основных разносчиков малярии, наиболее привлекателен не запах подмышек, а запах рук и ног.
В этой связи возникает заманчивое решение: если втереть в кожу рук и ног антибиотик, можно предотвратить нападение этого вида комаров, потому что, убивая микробов, вы убиваете запах.
Микробы, живущие на нашей коже, – как и все остальные микробы, – необязательно существуют специально для нашего блага. Но они, будучи добросовестными жильцами, и в самом деле здорово нам помогают: уже тем, что они на нас живут, они мешают другим, вредным, микробам нас заражать. На различных участках кожи обитают различные микробы, причем разнообразие – количество видов – необязательно пропорционально количеству микробов, имеющихся на том или ином участке. Иногда бывает как раз наоборот. Если проводить аналогию с Америкой, представьте себе, что штат Вермонт (население 600 тысяч человек) этнически столь же разнообразен, как Лос-Анджелес (десять миллионов человек), а Лос-Анджелес стал таким же моноэтничным, как Вермонт. У вас на лбу и под мышками огромное количество микробов, но сравнительно немногих видов; и наоборот, на руках (ладонях и предплечьях) относительно немного микробов, зато весьма разнообразных[4 - E. A. Grice et al., “Topographical and Temporal Diversity of the Human Skin Microbiome,” Science 324, no. 5931 (May 29, 2009): 1190–92; E. K. Costello et al., “Bacterial Community Variation in Human Body Habitats Across Space and Time,” Science 326, no. 5960 (December 18, 2009): 1694–97.]. Микробные сообщества на руках у женщин, как правило, более разнообразны, чем у мужчин, и эта разница сохраняется, несмотря даже на мытье рук, и это заставляет предположить, что причина, пусть еще и неизвестная, кроется в биологических различиях[5 - F. R. Blattner et al., “The Complete Genome Sequence of Escherichia Coli K-12,” Science 277, no. 5331 (September 5, 1997): 1453–62.].
Более того, мы обнаружили, что микробы, живущие на вашей левой руке, отличаются от живущих на правой. Вы можете потирать руки, хлопать в ладоши и касаться обеими руками одних и тех же поверхностей – на каждой все равно развивается отдельное микробное сообщество. Этот факт вдохновил нас с профессором Ноем Фирером из Университета Колорадо в Боулдере на попытку воспроизвести одно из самых знаменитых открытий общей биологии. В свое время, пытаясь объяснить распространение и распределение организмов на изолированных островах и связь между разнообразием видов и занимаемой территорией, британский биолог и антрополог Альфред Рассел Уоллес вместе с другими учеными разработал сложную теорию биогеографии[6 - R. H. MacArthur and E. O. Wil-son, The Theory of Island Biogeography. Princeton, NJ: Princeton University Press, 2001.]. Уоллес, современник Дарвина, одновременно с ним и независимо от него разработавший учение о естественном отборе, нанес на карту линию, которая проходит через современные Индонезию и Малайзию и отделяет азиатскую фауну (обезьяны и носороги) от австралийской (какаду и кенгуру). Мы с Фирером заинтересовались, можно ли провести такую же “линию Уоллеса” на клавиатуре компьютера между клавишами G и H – эта линия, по идее, должна разделять половины клавиатуры с четко отличающимися микробными популяциями. Мы также хотели проверить, будет ли на клавише “пробел” больше видов микробов – просто потому, что она гораздо длиннее всех остальных.
Наши результаты подтвердили существование своего рода “линии Уоллеса”, но мы обнаружили нечто куда более удивительное: каждый палец и соответствующая ему клавиша характеризовались примерно одинаковым микробным сообществом. Мы также смогли по микробному профилю ладони с точностью до 90 % определить хозяев компьютерной мыши[7 - N. Fierer et al., “Forensic Identification Using Skin Bacterial Communities,” Proceedings of the National Academy of Sciences of the United States of America 107, no. 14 (April 6, 2010): 6477–81.]. Микробное сообщество на вашей руке сильно отличается от аналогичных сообществ других людей (по разнообразию видов – в среднем на 85 %), что означает, что у каждого из нас, помимо обычных, есть еще и микробные отпечатки пальцев.
Мы пошли дальше и провели эксперименты, чтобы узнать, сколько раз нужно коснуться предмета, чтобы оставить отчетливый микробный след. Это исследование еще слишком неполное, чтобы использовать его результаты в суде. Но на телевидении приняты, скажем так, более упрощенные стандарты доказательств, поэтому вскоре после того, как мы опубликовали статью на эту тему, был показан очередной эпизод сериала “Место преступления: Майами”, где сюжет строился на судебно-медицинской экспертизе микробного отпечатка[8 - “Место преступления: Майами”: “CSI: Miami Season 9,” Wikipedia, http://en.wikipedia.org/wiki/List_of_CSI:_Miami_episodes#Season_9:_2010.E2.80.932011 (http://en.wikipedia.org/wiki/List_of_CSI:_Miami_episodes#Season_9:_2010.E2.80.932011).].
Тем временем криминалист-микробиолог Дэвид Картер перебрался из Небраски на Гавайи, чтобы устроить там “заповедник тел”. “Что это такое?” – спросите вы Перед криминалистами часто встает задача определить, как давно наступила смерть человека, труп которого они исследуют. В “заповеднике” Картера пожертвованные родственниками и различными институтами тела умерших хранятся в различных условиях[9 - Для очень познавательного и развлекательного введения в “сад нашего тела” см.: Mary Roach, Stiff: The Curious Lives of Human Cadavers. New York: W. W. Norton, 2004.], и ученые постоянно анализируют скорость их разложения. При этом наблюдается поразительная преемственность микробных сообществ. Так же как на голой скале вначале появляются колонии лишайников, затем, последовательно, мхи, травы, сорняки, кустарники и, наконец, деревья, процесс распада также идет в определенном порядке.
Джессика Меткалф, постдокторант в моей лаборатории в Университете Колорадо в Боулдере, устроила свой собственный “заповедник тел” в миниатюре, использовав сорок мертвых мышей (они умерли в процессе других экспериментов по созданию препаратов для лечения сердечно-сосудистых заболеваний и рака). Джессика обнаружила, что может правильно определить время смерти с точностью до трех дней. Это примерно такая же погрешность, как и в применяемом в настоящее время методе с использованием насекомых[10 - Meagan B. Gallagher, Sonia Sandhu, and Robert Kimsey, “Variation in Developmental Time for Geographically Distinct Populations of the Common Green Bottle Fly, Lucilia sericata (Meigen),” Journal of Forensic Sciences 55, no. 2 (March 2010): 438–42.]. Зачем же тогда нужен микробиологический метод?
Ответ: насекомые еще должны найти мертвое тело, в то время как микроорганизмы всегда тут как тут, а это может оказаться полезным в тех случаях, когда на месте преступления отсутствуют насекомые.
Нос и легкие
Следующим пунктом нашей экскурсии по телу будет нос. В ноздрях человека живут вполне определенные виды микробов, в том числе стафилококк золотистый (Staphylococcus aureus), который вызывает стафилококковые инфекции в больницах. Таким образом, здоровые люди, судя по всему, часто являются “домом” для опасных микробов. Мы считаем, что в данном случае объяснение может быть таким: другие бактерии, живущие у нас в носу, не дают золотистому стафилококку взять верх, точнее, захватить нос. Еще одно интересное наблюдение: окружающая среда сильно влияет на то, какие виды микроорганизмов поселяются у нас в носу. У детей с более разнообразным микробным населением носа, например у живущих в сельской местности, рядом с животными,
в будущем меньше вероятность заболеть астмой и аллергией[11 - O. S. Von Ehrenstein et al., “Reduced Risk of Hay Fever and Asthma Among Children of Farmers,” Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 30, no. 2 (February 2000): 187–93; E. von Mutius and D. Vercelli, “Farm Living: Effects on Childhood Asthma and Allergy,” Nature Reviews Immunology 10, no. 12 (December 2010): 861–68.]. Получается, что повозиться в грязи иногда полезно.
Спускаясь ниже, в легкие, мы обычно обнаруживаем только мертвые бактерии[12 - E. S. Charlson et al., “Assessing Bacterial Populations in the Lung by Replicate Analysis of Samples from the Upper and Lower Respiratory Tracts,” PloS One 7, no. 9 (2012): e42786; E. S. Charlson et al., “Topographical Continuity of Bacterial Populations in the Healthy Human Respiratory Tract,” American Journal of Respiratory and Critical Care Medicine 184, no. 8 (October 15, 2011): 957–63.]. Внутренняя поверхность легких, к которой есть доступ воздуха, содержит целый коктейль антимикробных пептидов: крошечных белков, которые мгновенно убивают попадающие туда бактерии. Однако в легких больных муковисцидозом или вирусом иммунодефицита человека (ВИЧ) иногда обнаруживаются опасные микроорганизмы, которые вносят вклад в развитие пульмонологических заболеваний[13 - J. K. Harris et al., “Molecular Identification of Bacteria in Bronchoalveolar Lavage Fluid from Children with Cystic Fibrosis,” Proceedings of the National Academy of Sciences of the United States of America 104, no. 51 (December 18, 2007): 20529–33.].
Ученые до сих пор спорят о том, имеется ли в горле у каждого из нас отдельное сообщество микробов, или там присутствуют только те микробы, которые поступают изо рта[14 - E. S. Charlson et al., “Topographical Continuity of Bacterial Populations in the Healthy Human Respiratory Tract,” American Journal of Respiratory and Critical Care Medicine 184, no. 8 (October 15, 2011): 957–63.]. Однако уже известно, что микробы из горла курильщиков отличаются от микробов некурящих людей, что, вероятно, говорит о том, что курение вредно не только для нас самих, но и для обитающих внутри нас существ[15 - A. Morris et al., “Comparison of the Respiratory Microbiome in Healthy Nonsmokers and Smokers,” American Journal of Respiratory and Critical Care Medicine 187, no. 10 (May 15, 2013): 1067–75.].
Рот и желудок
Скорее всего, вам приходилось слышать только о вредных бактериях ротовой полости – тех, которые вызывают заболевания десен и зубов. Одна из них, стрептококк мутанс (Streptococcus mutans), – та самая тварь, которая разрушает наши зубы. Появилась она, по-видимому, в связи с развитием земледелия[16 - O. E. Cornejo et al., “Evolutionary and Population Genomics of the Cavity Causing Bacteria Streptococcus Mutans,” Molecular Biology and Evolution 30, no. 4 (April 2013): 881–93.], когда рацион наших предков резко обогатился углеводами, особенно сахарами.
Так же как и невольно одомашненные нами и питающиеся нашими отбросами крысы, некоторые бактерии приучились жить в наших телах. К счастью, большинство из “одомашненных” бактерий полезны – они формируют биопленку, которая не пропускает “плохие” бактерии. Микробы ротовой полости могут даже помогать регулировать кровяное давление, расслабляя артерии при помощи выделяемого ими оксида азота (родственника закиси азота, с которым вы сталкивались, сидя в стоматологическом кресле).
Другой вид, палочка Плаута (Fusobacterium nucleatum), как правило, присутствует во рту здорового человека, однако может и способствовать развитию пародонтоза[17 - J. Slots, “The Predominant Cultivable Microflora of Advanced Periodontitis,” Scandinavian Journal of Dental Research 85, no. 2 (January/February 1977): 114–21.]. F. nucleatum представляет интерес, потому что этих бактерий находят внутри опухолей толстого кишечника[18 - M. Castellarin et al., “Fusobacterium Nucleatum Infection Is Prevalent in Human Colorectal Carcinoma,” Genome Research 22, no. 2 (February 2012): 299–306; M. R. Rubinstein et al., “Fusobacterium Nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/BetaCatenin Signaling via Its FadA Adhesin,” Cell Host & Microbe 14, no. 2 (August 14, 2013): 195–206; A. D. Kostic et al., “Fusobacterium Nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment,” Cell Host & Microbe 14 (2013): 207–15; R. L. Warren et al., “Co-occurrence of Anaerobic Bacteria in Colorectal Carcinomas,” Microbiome 1, no. 1 (May 15, 2013): 16; L. Flanagan et al., “Fusobacterium Nucleatum Associates with Stages of Colorectal Neoplasia Development, Colorectal Cancer and Disease Outcome,” European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology 33, no. 8 (August 2014): 1381–90.], но мы пока не знаем, причина это или следствие: то ли F. nucleatum вызывает рак, то ли это просто реакция на условия, в которых развивается опухоль.
Микробное население рта также весьма разнообразно. Даже разные стороны одного и того же зуба могут быть заселены разными микробными сообществами, в зависимости от множества факторов, включая доступ кислорода и особенности жевания.
В желудке, где среда почти такая же кислая, как в автомобильном аккумуляторе, могут выжить лишь немногие виды организмов, но они играют огромную роль. Одна из этих бактерий, хеликобактер пилори (Helicobacter pylori, H. pylori), сосуществует с человеком уже так давно, что, изучая ее штаммы у представителей разных наций, можно узнать, какие народы находятся в родстве друг с другом и с кем они контактировали в процессе миграции[19 - D. Falush et al., “Traces of Human Migrations in Helicobacter Pylori Populations,” Science 299, no. 5612 (March 7, 2003): 1582–85.].
H. pylori играет ключевую роль в возникновении язв желудка и тонкого кишечника, когда в результате разрушения слизистой оболочки желудочный сок начинает разъедать ткани. Первые симптомы включают дурной запах изо рта и жгучую боль в желудке, в дальнейшем развивается тошнота и кровотечение. Долгие годы врачи считали причиной язвы стресс и неправильное питание и рекомендовали пациентам отдых, покой, исключение острой пищи, алкоголя и кофе, прописывали молоко и антациды. Больные испытывали облегчение, но редко выздоравливали полностью.
В 1980-х годах австралийские врачи Барри Маршалл и Дж. Робин Уоррен показали, что в большинстве случаев язву вызывает бактерия H. pylori, поэтому лечение должно включать антибиотики или антибактериальные препараты, например содержащие висмут. Маршалл был настолько убежден в своей правоте, что лично выпил культуру H. pylori – и заработал гастрит (который быстро вылечил) и Нобелевскую премию (которую разделил с Уорреном).
Однако сегодня мы знаем, что более половины всего населения Земли являются носителями H. pylori. Почему же у подавляющего большинства из них нет язвы? Судя по всему, эта бактерия – лишь один из многих факторов риска данной болезни: необходимый, но недостаточный. Оказалось, что многие здоровые люди могут быть носителями H. pylori, как и ряда других бактерий, которых мы связываем с болезнями. Одна из задач и надежд науки о микробиомах – выяснение того, как и почему эти микроорганизмы иногда вдруг на нас набрасываются.
Кишечник
Далее мы переходим в кишечник. Мы считаем, что это самое большое и самое важное микробное сообщество в организме человека. Если вы – живущий в человеке микроб, то это ваша столица. Мегаполис длиной до десяти метров, полный извилистых улиц и укромных уголков. Микробам здесь раздолье: тепло, изобилие пищи и питья, да и канализация под боком. С точки зрения микроба наш кишечник похож одновременно и на Нью-Йорк, и на какую-нибудь восточную нефтяную столицу – бесчисленное население и доступная энергия.
Всасывание питательных веществ из пищи в кровь в основном происходит в тонком кишечнике. В толстом кишечнике всасывается вода, а также – при помощи ферментов, выделяемых полезными микроорганизмами, – происходит расщепление клетчатки, которая в непереваренном виде поступает из тонкого кишечника. При этом высвобождается еще больше энергии. Обитая в пищеварительном тракте, микробы кишечника в огромной степени руководят нашим метаболизмом. От них зависит, что нам можно есть, сколько калорий мы
усваиваем, воздействию каких питательных веществ и токсинов подвергаемся, как на нас влияют лекарства.
С точки зрения науки имеет большое значение еще один факт, касающийся этого важнейшего микробного сообщества: отсюда очень легко получить образцы. Микробы, живые и мертвые, просто выбрасываются наружу, обычно после утреннего кофе. В основном в фекалиях содержатся микроорганизмы из последнего, дистального, отдела толстой кишки[20 - P. B. Eckburg et al., “Diversity of the Human Intestinal Microbial Flora,” Science 308, no. 5728 (June 10, 2005): 1635–38.]. Несмотря на некоторую разницу в составе сообществ тонкого и толстого кишечника, эта разница в общем незначительна по сравнению с различиями между микробными сообществами двух разных людей[21 - M. Hamady and R. Knight, “Microbial Community Profiling for Human Microbiome Projects: Tools, Techniques, and Challenges,” Genome Research 19, no. 7 (July 2009): 1141–52.]. То есть ваши испражнения – готовый портрет уникального микробного сообщества вашего кишечника.
Правда, до некоторой степени картина, которую мы получаем, анализируя фекалии, получается искаженной. Например, E. coli часто упоминается в заголовках как ужасно грозная бактерия, которая время от времени попадает в пищу из-за недостаточного уровня санитарии, но на самом деле она необязательно опасна сама по себе. Мы знаем о ней только потому, что ее находят в фекалиях (если в овощах или мясе обнаруживается E. coli, это признак фекального заражения). В действительности этих бактерий в кишечнике здорового человека не так уж много: всего одна клетка на десять тысяч клеток других микроорганизмов[22 - Human Microbiome Project Consortium, “Structure, Function and Diversity of the Healthy Human Microbiome,” Nature 486, no. 7402 (June 13, 2012): 207–14.]. Своей известностью E. coli обязана тому факту, что среди других микроорганизмов она играет роль сорняка, вроде лебеды или одуванчика, и лучше их всех растет в чашке Петри. То же самое относится к ряду других бактерий, чью роль на протяжении десятилетий мы преувеличивали только по одной причине: их легко вырастить в лаборатории.
Большинство микробов в нашем кишечнике гораздо менее стабильны, и мы пока не знаем, как вырастить их in vitro (в данном случае – в лаборатории). В основном они относятся к двум крупным группам бактерий – фирмикуты (Firmicutes) и бактероиды (Bacteroidetes[23 - Eckburg et al., “Diversity of the Human Intestinal Microbial Flora,” 1635–38.]) – и играют важную роль в переваривании пищи и усвоении лекарств. Кроме того, установлена их связь с рядом заболеваний, включая ожирение[24 - R. E. Ley et al., “Microbial Ecology: Human Gut Microbes Associated with Obesity,” Nature 444, no. 7122 (December 21, 2006): 1022–23; P. J. Turnbaugh et al., “A Core Gut Microbiome in Obese and Lean Twins,” Nature 457, no. 7228 (January 22, 2009): 480–84; J. Henao-Mejia et al., “Inflammasome-Mediated Dysbiosis Regulates Progression of NAFLD and Obesity,” Nature 482, no. 7384 (February 1, 2012): 179–85; V. K. Ridaura et al., “Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice,” Science 341, no. 6150 (September 6, 2013): 1241214; M. L. Zupancic et al., “Analysis of the Gut Microbiota in the Old Order Amish and Its Relation to the Metabolic Syndrome,” PloS One 7, no. 8 (2012): e43052; D. Knights et al., “HumanAssociated Microbial Signatures: Examining Their Predictive Value,” Cell Host & Microbe 10, no. 4 (October 20, 2011): 292–96; E. Le Chatelier et al., “Richness of Human Gut Microbiome Correlates with Metabolic Markers,” Nature 500, no. 7464 (August 29, 2013): 541–46; A. Cotillard et al., “Dietary Intervention Impact on Gut Microbial Gene Richness,” Nature 500, no. 7464 (August 29, 2013): 585–88.], воспалительные заболевания кишечника, рак толстой кишки, болезни сердца[25 - R. A. Koeth et al., “Intestinal Microbiota Metabolism of L–Carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis,” Nature Medicine 19, no. 5 (May 2013): 576–85; W. H. Tang et al., “Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk,” New England Journal of Medicine 368, no. 17 (April 25, 2013): 1575–84.], рассеянный склероз[26 - Y. K. Lee et al., “Proinflammatory T-cell Responses to Gut Microbiota Promote Experimental Autoimmune Encephalomyelitis,” supplement 1, Proceedings of the National Academy of Sciences of the United States of America 108 (March 15, 2011): 4615–22; K. Berer et al., “Commensal Microbiota and Myelin Autoantigen Cooperate to Trigger Autoimmune Demyelination,” Nature 479 (2011): 538–41.] и аутизм[27 - E. Y. Hsiao et al., “Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders,” Cell 155, no. 7 (December 19, 2013): 1451–63.]. Вот почему такое открытие, как секвенирование следующего поколения, произвело настоящую революцию. Мы наконец можем рассмотреть то, что до сих пор оставалось невидимым.
Гениталии
Прежде всего должен признаться в собственном невежестве: мы еще очень мало знаем о микробах, живущих снаружи и внутри пениса. Надо сказать, что микробиология – наука, которая началась с того, что голландский ученый Антони ван Левенгук рассматривал под микроскопом в числе прочего и сперму, – так и не изучила как следует мужские гениталии. Тем не менее определенный прогресс уже достигнут.
У меня есть коллега (который желает сохранить анонимность, чтобы не стать добычей телевизионщиков), изучающий распространение заболеваний, передающихся половым путем (ЗППП), среди подростков. Часть его работы связана с исследованием микробиома полового члена подростков. Для этого ему регулярно необходимы образцы спермы, причем полученные регулярно и сразу после полового акта. Итак, когда этому человеку звонит один из его “клиентов”, мой коллега в своем обычном прикиде – длинные волосы, кожаная куртка и золотая цепь вокруг шеи – садится в белый лабораторный микроавтобус и едет отбирать пробы с пенисов ваших сыновей. Конечно, все это исключительно ради науки. И находятся же такие сознательные родители, которые подписывают на это официальное согласие!
Так или иначе, в этой области до сих пор проводилось недостаточно исследований (возможно, отчасти из-за того, что слишком многие при описании темы начинают глупо хихикать), и поэтому работа моего коллеги может стать важной вехой по созданию микробиома пениса – в болезни и здравии.
Вагина, в отличие от пениса, изучена очень хорошо. В микрофлоре здоровой взрослой женщины европейского происхождения обычно доминирует всего несколько видов молочнокислых бактерий из рода лактобациллы (Lactobacillus). Не волнуйтесь, это не те бактерии, которые превращают молоко в йогурт, но все же их близкие родственники, которые также вырабатывают молочную кислоту, поддерживая в вагине кислую среду. Вот что показал в своих работах Жак Равель, профессор микробиологии и иммунологии в Университете штата Мэриленд: виды, доминирующие в вагинальном микробном сообществе конкретной женщины, могут с течением времени меняться, в том числе в разные периоды менструального цикла, когда благодаря поступлению крови развиваются перерабатывающие железо бактерии деферрибактер (Deferribacter[28 - P. Gajer et al., “Temporal Dynamics of the Human Vaginal Microbiota,” Science Translational Medicine 4, no. 132 (May 2, 2012): 132ra52; J. Ravel et al., “Daily Temporal Dynamics of Vaginal Microbiota Before, During and After Episodes of Bacterial Vaginosis,” Microbiome 1, no. 1 (December 2, 2013): 29.]). Вагинальные бактерии женщины могут меняться даже при смене полового партнера.
До недавнего времени почти все исследования вагинальной микрофлоры были сосредоточены на борьбе с ЗППП. Ученые изучали роль вагинальных микробов в заболевании, которое называется бактериальный вагиноз, а также пытались установить, могут ли вагинальные микробы способствовать или препятствовать передаче различных половых инфекций, включая ВИЧ.
Однако выяснилось, что не все здоровые вагинальные микробиомы похожи друг на друга. Новые результаты заставляют предположить, что микробные сообщества здоровых женщин, в частности латиноамериканок, афроамериканок, белых и азиаток, сильно различаются в зависимости от происхождения. И, как мы увидим, до некоторой степени вагинальные микробы могут определить нашу
судьбу.
2. Откуда берется наш микробиом
Если вы – родитель, то хотите для своего ребенка всего самого лучшего. Если вы – ученый, то ваши представления о том, что такое “лучшее”, будут основаны на данных наблюдений и статистического анализа и могут оказаться весьма необычными. А уж если вы – один из моих коллег, изучающий роль микромира в нашей жизни, то эти представления могут проявиться, скажем так, очень специфическим образом.
Когда мы с моей подругой Амандой ждали нашего первого ребенка, мы разработали очень подробный план его появления на свет, включавший даже доулу – профессиональную помощницу при родах (иногда очень полезно, чтобы рядом был человек, стоящий на твоей стороне, а не защищающий интересы страховой компании). Но дети, даже до своего рождения, не очень-то беспокоятся о планах родителей. Второго ноября 2011 года команда проекта “Микробиом человека”, частью которой был я, наконец отослала две фундаментальных статьи с нашими результатами в ведущий научный журнал Nature. Эта работа потребовала неимоверных усилий и от меня, и от Аманды, и мы считали, что заслужили право на праздник. Но поскольку Аманда, как-никак, была беременна, мне пришлось пить за двоих – или даже за троих, включая ребенка. Неважно. Наша дочь должна была появиться на свет только через три недели. Нам еще многое предстояло сделать до ее рождения, но все это могло подождать до утра.
Около полуночи, когда мы ложились спать, на лице у Аманды вдруг появилось какое-то странное выражение. Наклонившись и пощупав ковер у себя под ногами, она сказала: “Кажется, у меня начали отходить воды”. Она позвонила в больницу, и нам велели немедленно приезжать. Поспешно одевшись, мы прыгнули в машину, и Аманда повезла нас в больницу, которая, к счастью, была всего в нескольких километрах от нашего дома. После осмотра гинеколог подтвердил, что роды начались. “Хорошо, – сказали мы, – но можно мы быстренько съездим домой и привезем все необходимое – ползунки, одеяльце, бутылочки, которые мы купили, но не успели захватить?” – “Нет, – сказали нам, – нам, Аманда уже никуда не поедет, пока не родится ребенок”.
Таким образом, возникла проблема: я не мог сесть за руль, хотя чувствовал, что с каждой минутой трезвею. Я вызвал такси, но водитель заблудился, никак не мог найти больницу (наши места с точки зрения доступности такси – далеко не Нью-Йорк), и даже через час он был еще где-то очень далеко. Тогда я сказал ему, что отменяю заказ, и, прихватив подробный список того, что нужно было принести, пошел пешком по сугробам. Мне удалось впихнуть все пункты списка в три имеющихся у нас рюкзака и даже дотащить эти рюкзаки до больницы.
Все шло хорошо. Во всяком случае, так нам казалось. Но к исходу первых суток нашего пребывания в больнице врачи начали заметно беспокоиться. Они сказали, что у ребенка развивается дистресс-синдром. Мы проконсультировались со своей доулой, и она согласилась, что настал момент, когда мы должны перестать надеяться на природу и положиться на современную медицину. Итак, наша дочь появилась на свет в результате экстренного кесарева сечения, и двадцать минут спустя я уже держал ее на руках. Но даже современные медицинские технологии не всесильны. Поэтому, чтобы обеспечить дочь необходимыми микробами, нам пришлось взять дело в свои руки: мы нанесли на кожу новорожденной мазки из вагины ее матери, и в этих мазках содержались те микробы, в которых нуждался ребенок.
Когда мы рассказываем эту историю, у слушателей обычно возникает три вопроса. На первый мы отвечаем, что таким образом репетируем свое выступление на выпускном нашей дочери.
На второй вопрос (“А как вы это сделали?”) ответ простой: установленной процедуры не существует, но мы брали мазки обычными стерильными ватными палочками, а затем касались ими различных частей тела ребенка: кожи, ушей, рта – всех тех мест, куда должны были попасть микробы, если бы он естественным путем прошел через родовые пути.
Но что касается третьего вопроса – почему мы вообще решили это сделать, – то тут нужны более подробные объяснения.
Первые микроорганизмы вы получаете от матери, проходя через ее родовые пути. Доказано, что материнский микробиом загодя к этому готовится. В течение беременности в вагинальном микробиоме матери начинают преобладать бактерии определенного вида Lactobacillus[29 - R. Romero et al., “The Composition and Stability of the Vaginal Microbiota of Normal Pregnant Women Is Different from That of Non-Pregnant Women,” Microbiome 2, no. 1 (Febuary3, 2014): 4.]. Микробное население кишечника тоже меняется: становится больше организмов, способных более эффективно извлекать из пищи энергию. К сожалению, эти микробы также могут способствовать возникновению воспаления, особенно в последнем триместре, – это сложный процесс, результатом которого, среди прочего, могут быть диарея и судороги.
Откуда мы знаем, что женский микробиом меняется во время беременности? Для ответа нам понадобится шприц, полный фекалий, а также наши верные помощники, вечные страдальцы – лабораторные мыши. Группа ученых из США, Финляндии и Швеции перенесла фекалии беременных женщин в организм мышей, выращенных в стерильных боксах, то есть не имеющих никаких собственных микробов. Мышей разделили на две группы: одна получила образцы от женщин, находящихся на первом триместре беременности, другая – от тех, которые были на последнем, третьем, триместре. Обе группы получали совершенно одинаковое питание. Тем не менее мыши “третьего триместра” набрали больший вес и приобрели ряд метаболических и иммунологических характеристик, которые часто наблюдаются у беременных[30 - O. Koren et al., “Host Remodeling of the Gut Microbiome and Metabolic Changes During Pregnancy,” Cell 150, no. 3 (August 3, 2012): 470–80.].
Пересаживая мышам микробов, мы можем ответить на вопрос: являются ли изменения в популяции реакцией на беременность, или наоборот – микроорганизмы являются катализатором этих изменений. Микробные сообщества кишечника беременных изменяются таким образом, чтобы мать могла извлекать из пищи больше энергии и передавать ее плоду. Возможно также, что микроорганизмы кишечника готовятся к тому, чтобы перейти к ребенку. Мы знаем, что аналогичные процессы происходят у животных со специфическим рационом, например у коал, которым необходимы листья эвкалипта, и у летучих мышей-вампиров, питающихся кровью.
До сих пор остается неясным, есть ли микробы у плода в матке. Опубликованы работы, где наличие микробов в амниотической жидкости или в плаценте связывают с преждевременными родами[31 - K. Aagaard et al., “The Placenta Harbors a Unique Microbiome,” Science Translational Medicine 6, no. 237 (May 21, 2014): 237ra65.]. Но эти результаты пока не получили широкого подтверждения. В настоящее время преобладает точка зрения, что у здорового плода нет никаких бактерий, – хотя, как это часто случается в науке, не исключено, что после получения новых данных эта точка зрения будет пересмотрена.
По всей вероятности, первых микробов мы получаем в процессе рождения, проходя по родовым путям, наполненным вагинальными бактериями. Несмотря на то, что микробные сообщества у разных женщин различны, во время беременности все они изменяются в одном и том же направлении[32 - Romero et al.,
“Composition and Stability of Vaginal Microbiota of Normal Pregnant Women Different from That of Non-Pregnant Women.”]. И это вполне логично, если микроорганизмы, как мы полагаем, эволюционируют, чтобы обеспечить ребенку при его появлении на свет защитный слой. Это немного похоже на один из тех мультфильмов, в которых новорожденного приветствует хор бабочек и певчих птиц – только роль бабочек и птичек играют уродливые ворсистые существа, которые, барахтаясь в слизи, заползают в ребенка.
Итак, предположим, что первых микробов ребенок получает из родовых путей и вагины матери. Что происходит, если он появляется на свет иным способом? Во многих странах количество кесаревых сечений возрастает[33 - Michelle K. Osterman and Joyce A. Martin, “Changes in Cesarean Delivery Rates by Gestational Age: United States, 1996–2011,” NCHS Data Brief, no. 124, June 2013: 1–8; Luz Gibbons et al., The Global Numbers and Costs of Additionally Needed and Unnecessary Cesarean Sections Performed per Year: Overuse as a Barrier to Universal Coverage. Geneva, Switzerland: World Health Organization, 2010.], потому что они, во-первых, позволяют избежать медицинских осложнений и, во-вторых, их проще планировать.
Мария Глория Домингес-Белло, научный сотрудник медицинского центра Лангона при Нью-Йоркском университете, изучает микробиом младенцев. В нашей совместной работе мы показали, что, в отличие от взрослых с их многочисленными специализированными микробными экосистемами, микробиомы новорожденных более или менее одинаковы. Если ребенок рождается естественным путем, его микробиом похож на вагинальное микробное сообщество матери; если в результате кесарева сечения – скорее на кожный микробиом взрослых, то есть на совершенно другое сообщество[34 - M. G. Dominguez-Bello et al., “Delivery Mode Shapes the Acquisition and Structure of the Initial Microbiota Across Multiple Body Habitats in Newborns,” Proceedings of the National Academy of Sciences of the United States of America 107, no. 26 (June 29, 2010): 11971–75.]. Кесарево сечение ассоциируется с повышенным риском ряда заболеваний, связанных с микробиомом или/и иммунной системой, включая астму[35 - G. V. Guibas et al., “Conception via In Vitro Fertilization and Delivery by Caesarean Section Are Associated with Paediatric Asthma Incidence,” Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 43, no. 9 (September 2013): 1058–66; L. Braback, A. Lowe, and A. Hjern, “Elective Cesarean Section and Childhood Asthma,” American Journal of Obstetrics and Gynecology 209, no. 5 (November 2013): 496; C. Roduit et al., “Asthma at 8 Years of Age in Children Born by Caesarean Section,” Thorax 64, no. 2 (February 2009): 107–13; M. C. Tollanes et al., “Cesarean Section and Risk of Severe Childhood Asthma: A Population-Based Cohort Study,” Journal of Pediatrics 153, no. 1 (July 2008): 112–16; B. Xu et al., “Caesarean Section and Risk of Asthma and Allergy in Adulthood,” Journal of Allergy and Clinical Immunology 107, no. 4 (April 2001): 732–33.], а также, возможно, ожирение[36 - M. Z. Goldani et al., “Cesarean Section and Increased Body Mass Index in School Children: Two Cohort Studies from Distinct Socioeconomic Background Areas in Brazil,” Nutrition Journal 12, no. 1 (July 25, 2013): 104; A. A. Mamun et al., “Cesarean Delivery and the Long-term Risk of Offspring Obesity,” Obstetrics and Gynecology 122, no. 6 (December 2013): 1176–83; D. N. Mesquita et al., “Cesarean Section Is Associated with Increased Peripheral and Central Adiposity in Young Adulthood: Cohort Study,” PloS One 8, no. 6 (June 27, 2013): e66827; K. Flemming et al., “The Association Between Caesarean Section and Childhood Obesity Revisited: A Cohort Study,” Archives of Disease in Childhood 98, no. 7 (July 2013): 526–32; E. Svensson et al., “Caesarean Section and Body Mass Index Among Danish Men,” Obesity 21, no. 3 (March 2013): 429–33; H. T. Li, Y. B. Zhou, and J. M. Liu, “The Impact of Cesarean Section on Offspring Overweight and Obesity: A Systematic Review and Meta-Analysis,” International Journal of Obesity 37, no. 7 (July 2013): 893–99; H. A. Goldani et al., “Cesarean Delivery Is Associated with an Increased Risk of Obesity in Adulthood in a Brazilian Birth Cohort Study,” American Journal of Clinical Nutrition 93, no. 6 (June 2011): 1344–47; L. Zhou et al., “Risk Factors of Obesity in Preschool Children in an Urban Area in China,” European Journal of Pediatrics 170, no. 11 (November 2011): 1401–6.], пищевые аллергии[37 - T. Marrs et al., “Is There an Association Between Microbial Exposure and Food Allergy? A Systematic Review,” Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology 24, no. 4 (June 2013): 311–20 e8.] и атопические дерматиты[38 - J. Penders et al., “Establishment of the Intestinal Microbiota and Its Role for Atopic Dermatitis in Early Childhood,” Journal of Allergy and Clinical Immunology 132, no. 3 (September 2013): 601–7 e8; K. Pyrhonen et al., “Caesarean Section and Allergic Manifestations: Insufficient Evidence of Association Found in PopulationBased Study of Children Aged 1 to 4 Years,” Acta Paediatrica 102, no. 10 (October 2013): 982–89; F. A. van Nimwegen et al., “Mode and Place of Delivery, Gastrointestinal Microbiota, and Their Influence on Asthma and Atopy,” Journal of Allergy and Clinical Immunology 128, no. 5 (November 2011): 948–55 e1–3; P. Bager, J. Wohlfahrt, and T. Westergaard, “Caesarean Delivery and Risk of Atopy and Allergic Disease: Meta-Analyses,” Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 38, no. 4 (April 2008): 634–42; K. Negele et al., “Mode of Delivery and Development of Atopic Disease During the First 2 Years of Life,” Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology 15, no. 1 (February 2004): 48–54.] (разновидность экземы). Но не нужно паниковать, если вы сами или ваш ребенок пришли в этот мир при помощи кесарева сечения. Скорее всего, с вами все будет в порядке: речь идет об относительно невысоких рисках.
Тем не менее предположение о том, что проблемы со здоровьем могут быть вызваны отсутствием контакта с микробным сообществом, к которому мы адаптированы, вполне обоснованно. Примерно до начала прошлого столетия все люди, доживавшие до зрелости, при рождении проходили через родовые пути и получали свое собственное сообщество микроорганизмов. Вот почему, когда наша собственная дочь появилась на свет в результате экстренного кесарева сечения, мы покрыли ее вагинальными микробами, которых она должна была получить естественным путем. А поскольку каких-либо признанных руководств по этому вопросу не существует, мы поступили по своему разумению.
Пока что мы не знаем, повлияло ли это на нашу дочь: вы не можете получить значимые статистические результаты, если размер выборки – “один ребенок”. Но моя лаборатория при участии доктора Домингес-Белло выполняет пилотный проект, чтобы проверить этот эффект в более широких масштабах. На момент написания книги мы смогли подтвердить, что “вагинальные” и “кесаревы” младенцы сразу после рождения имеют различные микробиомы (то же самое подтвердила канадская группа ученых в аналогичном исследовании[39 - M. B. Azad et al., “Gut Microbiota of Healthy Canadian Infants: Profiles by Mode of Delivery and Infant Diet at 4 Months,” CMAJ: Canadian Medical Association Journal 185, no. 5 (March 19, 2013): 385–94.]). Однако у нас пока нет достаточной информации, чтобы проследить, как это влияет на их здоровье в будущем.
Кроме того, очень трудно сравнивать далекие последствия кесарева сечения и естественных родов, потому что после рождения наши микробиомы быстро усложняются. В момент рождения все младенцы, проходящие через родовые пути, имеют очень похожие микробиомы. Но когда мы становимся взрослыми, разница между нами – точнее, нашими микробиомами – огромна.
Если мы, люди, можем так сильно отличаться друг от друга, то возникает вопрос: с кем же у нас больше всего сходства? С теми, кто ест то же, что и мы? С родственниками, которые живут вместе с нами? С жителями нашего города или континента? Оказывается, все эти факторы влияют на наш микробиом, и мы только стоим на пороге множества открытий, одно важнее другого.
Детство – один из наиболее важных периодов развития микробиоты человека (то есть самих микробов, в то время как слово “микробиом”, как уже говорилось, относится к совокупности генов). Профессор микробиологии Корнелльского университета Рут Лей вместе с сотрудниками моей лаборатории изучали стул одного и того же ребенка на протяжении первых 838 дней его жизни[40 - J. E. Koenig et al., “Succession of Microbial Consortia in the Developing Infant Gut Microbiome,” supplement 1, Proceedings of the National Academy of Sciences of the United States of America 108 (March 15, 2011): 4578–85.]. Мы обнаружили, что если в самом начале микробиом стул этого мальчика совпадал с влагалищным микробиомом взрослой женщины (чего и следовало ожидать, учитывая,
что он родился естественным путем), то в конце он превратился в обычный кишечный микробиом взрослого человека. Какое огромное изменение между этими двумя временными вехами!
Что самое интересное, ежедневные различия между его микробными сообществами были больше, чем разница между фекальными сообществами двух здоровых людей. В некоторых случаях недельная разница была больше, чем у 250 взрослых, которых мы отслеживали в похожем проекте. Иными словами, если с точки зрения микробиологии в начале наблюдений малыш более или менее напоминал медведя (у медведей, благодаря их богатой мясом диете, очень простой кишечник), то в конце – обезьяну. Чрезвычайно интересным стал период, когда мальчика лечили антибиотиками от ушной инфекции: в это время его микробиом казался микробиомом не просто другого человека, но чуть ли не существа другого вида! Однако через несколько недель он вновь восстановился до состояния микробиома взрослого. Это к вопросу о том, как часто мы можем принимать и давать детям антибиотики.
Формирование нашего микробиома, даже в самые первые дни, зависит от диеты. Наблюдается заметная разница между результатами грудного и искусственного вскармливания. “Груднички” имеют доступ к особым микробам, содержащимся в материнском молоке, а также к особым сахарам, которые способствуют развитию полезных микробов. Затем, месяцев в шесть, когда мы начинаем есть твердую пищу, наш микробиом проходит следующую стадию развития, когда кратковременные пищевые вариации почти на него не влияют. Но в долгосрочной перспективе вы – это то, что вы едите: если брать период в один год, то наибольшее влияние на микробиом кишечника оказывает диета, от которой зависит баланс двух важнейших групп бактерий, переваривающих соответственно белок и пищевые волокна[41 - G. D. Wu et al., “Linking Longterm Dietary Patterns with Gut Microbial Enterotypes,” Science 334, no. 6052 (October 7, 2011): 105–8.].
Эти две категории бактерий определяют малоизвестный аспект глобального разнообразия: различия в кишечных микробиомах. Все правильно: наряду с языковыми и культурными различиями народы различаются и своими микробами. У народов, которые едят много мяса, преобладает группа, которая называется бактероиды – Bacteroides (привет вам, США и Европа), в то время как в кишечнике людей, которые питаются в основном зерновыми, доминирует группа превотеллы – Prevotella[42 - G. D. Wu et al., “Linking Longterm Dietary Patterns with Gut Microbial Enterotypes,” Science 334, no. 6052 (October 7, 2011): 105–8.].
Но на самом деле все еще сложнее. Например, микробиомы жителей США и Европы значительно различаются. Даже жителей отдельных регионов, например Дании и Испании, можно отличить друг от друга по их микробиомам[43 - J. Qin et al., “A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing,” Nature 464, no. 7285 (March 4, 2010): 59–65.], хотя различия между ними меньше, чем у людей из разных регионов, ведущих традиционный образ жизни. По сравнению с жителями США у сельских жителей Малави, питающихся в основном кукурузой, и фермеров Венесуэлы, чей рацион состоит главным образом из маниока, гораздо больше Prevotella – это следствие диеты с высоким содержанием клетчатки. Правда, возможно, что различия связаны также с генетикой и экологическими факторами[44 - T. Yatsunenko et al., “Human Gut Microbiome Viewed Across Age and Geography,” Nature 486, no. 7402 (May 9, 2012): 222–7.].
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию (http://www.litres.ru/rob-nayt/smotri-chto-u-tebya-vnutri-kak-mikroby-zhivuschie-v-nashem-tele-opredelyaut-nashe-zdorove-i-nashu-lichnost/?lfrom=931425718) на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
notes
Сноски
1
Следует отметить, что последний доклад Американской академии микробиологии снижает это соотношение до 3:1 в основном за счет увеличения числа подсчитанных клеток человека. Но в любом случае численный перевес на стороне микробов. См.: http://academy.asm.org/index.php/faq-series/5122humanmicrobiome (http://academy.asm.org/index.php/faq-series/5122humanmicrobiome).
2
Доступно онлайн: проект “Гутенберг”, www.gutenberg.org/files/1228/1228-h/1228-h.htm (http://www.gutenberg.org/files/1228/1228-h/1228-h.htm).
3
N. O. Verhulst et al., “Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes,” PloS One 6, no. 12 (2011): e28991.
4
E. A. Grice et al., “Topographical and Temporal Diversity of the Human Skin Microbiome,” Science 324, no. 5931 (May 29, 2009): 1190–92; E. K. Costello et al., “Bacterial Community Variation in Human Body Habitats Across Space and Time,” Science 326, no. 5960 (December 18, 2009): 1694–97.
5
F. R. Blattner et al., “The Complete Genome Sequence of Escherichia Coli K-12,” Science 277, no. 5331 (September 5, 1997): 1453–62.
6
R. H. MacArthur and E. O. Wil-son, The Theory of Island Biogeography. Princeton, NJ: Princeton University Press, 2001.
7
N. Fierer et al., “Forensic Identification Using Skin Bacterial Communities,” Proceedings of the National Academy of Sciences of the United States of America 107, no. 14 (April 6, 2010): 6477–81.
8
“Место преступления: Майами”: “CSI: Miami Season 9,” Wikipedia, http://en.wikipedia.org/wiki/List_of_CSI:_Miami_episodes#Season_9:_2010.E2.80.932011 (http://en.wikipedia.org/wiki/List_of_CSI:_Miami_episodes#Season_9:_2010.E2.80.932011).
9
Для очень познавательного и развлекательного введения в “сад нашего тела” см.: Mary Roach, Stiff: The Curious Lives of Human Cadavers. New York: W. W. Norton, 2004.
10
Meagan B. Gallagher, Sonia Sandhu, and Robert Kimsey, “Variation in Developmental Time for Geographically Distinct Populations of the Common Green Bottle Fly, Lucilia sericata (Meigen),” Journal of Forensic Sciences 55, no. 2 (March 2010): 438–42.
11
O. S. Von Ehrenstein et al., “Reduced Risk of Hay Fever and Asthma Among Children of Farmers,” Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 30, no. 2 (February 2000): 187–93; E. von Mutius and D. Vercelli, “Farm Living: Effects on Childhood Asthma and Allergy,” Nature Reviews Immunology 10, no. 12 (December 2010): 861–68.
12
E. S. Charlson et al., “Assessing Bacterial Populations in the Lung by Replicate Analysis of Samples from the Upper and Lower Respiratory Tracts,” PloS One 7, no. 9 (2012): e42786; E. S. Charlson et al., “Topographical Continuity of Bacterial Populations in the Healthy Human Respiratory Tract,” American Journal of Respiratory and Critical Care Medicine 184, no. 8 (October 15, 2011): 957–63.
13
J. K. Harris et al., “Molecular Identification of Bacteria in Bronchoalveolar Lavage Fluid from Children with Cystic Fibrosis,” Proceedings of the National Academy of Sciences of the United States of America 104, no. 51 (December 18, 2007): 20529–33.
14
E. S. Charlson et al., “Topographical Continuity of Bacterial Populations in the Healthy Human Respiratory Tract,” American Journal of Respiratory and Critical Care Medicine 184, no. 8 (October 15, 2011): 957–63.
15
A. Morris et al., “Comparison of the Respiratory Microbiome in Healthy Nonsmokers and Smokers,” American Journal of Respiratory and Critical Care Medicine 187, no. 10 (May 15, 2013): 1067–75.
16
O. E. Cornejo et al., “Evolutionary and Population Genomics of the Cavity Causing Bacteria Streptococcus Mutans,” Molecular Biology and Evolution 30, no. 4 (April 2013): 881–93.
17
J. Slots, “The Predominant Cultivable Microflora of Advanced Periodontitis,” Scandinavian Journal of Dental Research 85, no. 2 (January/February 1977): 114–21.
18
M. Castellarin et al., “Fusobacterium Nucleatum Infection Is Prevalent in Human Colorectal Carcinoma,” Genome Research 22, no. 2 (February 2012): 299–306; M. R. Rubinstein et al., “Fusobacterium Nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/BetaCatenin Signaling via Its FadA Adhesin,” Cell Host & Microbe 14, no. 2 (August 14, 2013): 195–206; A. D. Kostic et al., “Fusobacterium Nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment,” Cell Host & Microbe 14 (2013): 207–15; R. L. Warren et al., “Co-occurrence of Anaerobic Bacteria in Colorectal Carcinomas,” Microbiome 1, no. 1 (May 15, 2013): 16; L. Flanagan et al., “Fusobacterium Nucleatum Associates with Stages of Colorectal Neoplasia Development, Colorectal Cancer and Disease Outcome,” European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology 33, no. 8 (August 2014): 1381–90.
19
D. Falush et al., “Traces of Human Migrations in Helicobacter Pylori Populations,” Science 299, no. 5612 (March 7, 2003): 1582–85.
20
P. B. Eckburg et al., “Diversity of the Human Intestinal Microbial Flora,” Science 308, no. 5728 (June 10, 2005): 1635–38.
21
M. Hamady and R. Knight, “Microbial Community Profiling for Human Microbiome Projects: Tools, Techniques, and Challenges,” Genome Research 19, no. 7 (July 2009): 1141–52.
22
Human Microbiome Project Consortium,
“Structure, Function and Diversity of the Healthy Human Microbiome,” Nature 486, no. 7402 (June 13, 2012): 207–14.
23
Eckburg et al., “Diversity of the Human Intestinal Microbial Flora,” 1635–38.
24
R. E. Ley et al., “Microbial Ecology: Human Gut Microbes Associated with Obesity,” Nature 444, no. 7122 (December 21, 2006): 1022–23; P. J. Turnbaugh et al., “A Core Gut Microbiome in Obese and Lean Twins,” Nature 457, no. 7228 (January 22, 2009): 480–84; J. Henao-Mejia et al., “Inflammasome-Mediated Dysbiosis Regulates Progression of NAFLD and Obesity,” Nature 482, no. 7384 (February 1, 2012): 179–85; V. K. Ridaura et al., “Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice,” Science 341, no. 6150 (September 6, 2013): 1241214; M. L. Zupancic et al., “Analysis of the Gut Microbiota in the Old Order Amish and Its Relation to the Metabolic Syndrome,” PloS One 7, no. 8 (2012): e43052; D. Knights et al., “HumanAssociated Microbial Signatures: Examining Their Predictive Value,” Cell Host & Microbe 10, no. 4 (October 20, 2011): 292–96; E. Le Chatelier et al., “Richness of Human Gut Microbiome Correlates with Metabolic Markers,” Nature 500, no. 7464 (August 29, 2013): 541–46; A. Cotillard et al., “Dietary Intervention Impact on Gut Microbial Gene Richness,” Nature 500, no. 7464 (August 29, 2013): 585–88.
25
R. A. Koeth et al., “Intestinal Microbiota Metabolism of L–Carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis,” Nature Medicine 19, no. 5 (May 2013): 576–85; W. H. Tang et al., “Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk,” New England Journal of Medicine 368, no. 17 (April 25, 2013): 1575–84.
26
Y. K. Lee et al., “Proinflammatory T-cell Responses to Gut Microbiota Promote Experimental Autoimmune Encephalomyelitis,” supplement 1, Proceedings of the National Academy of Sciences of the United States of America 108 (March 15, 2011): 4615–22; K. Berer et al., “Commensal Microbiota and Myelin Autoantigen Cooperate to Trigger Autoimmune Demyelination,” Nature 479 (2011): 538–41.
27
E. Y. Hsiao et al., “Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders,” Cell 155, no. 7 (December 19, 2013): 1451–63.
28
P. Gajer et al., “Temporal Dynamics of the Human Vaginal Microbiota,” Science Translational Medicine 4, no. 132 (May 2, 2012): 132ra52; J. Ravel et al., “Daily Temporal Dynamics of Vaginal Microbiota Before, During and After Episodes of Bacterial Vaginosis,” Microbiome 1, no. 1 (December 2, 2013): 29.
29
R. Romero et al., “The Composition and Stability of the Vaginal Microbiota of Normal Pregnant Women Is Different from That of Non-Pregnant Women,” Microbiome 2, no. 1 (Febuary3, 2014): 4.
30
O. Koren et al., “Host Remodeling of the Gut Microbiome and Metabolic Changes During Pregnancy,” Cell 150, no. 3 (August 3, 2012): 470–80.
31
K. Aagaard et al., “The Placenta Harbors a Unique Microbiome,” Science Translational Medicine 6, no. 237 (May 21, 2014): 237ra65.
32
Romero et al., “Composition and Stability of Vaginal Microbiota of Normal Pregnant Women Different from That of Non-Pregnant Women.”
33
Michelle K. Osterman and Joyce A. Martin, “Changes in Cesarean Delivery Rates by Gestational Age: United States, 1996–2011,” NCHS Data Brief, no. 124, June 2013: 1–8; Luz Gibbons et al., The Global Numbers and Costs of Additionally Needed and Unnecessary Cesarean Sections Performed per Year: Overuse as a Barrier to Universal Coverage. Geneva, Switzerland: World Health Organization, 2010.
34
M. G. Dominguez-Bello et al., “Delivery Mode Shapes the Acquisition and Structure of the Initial Microbiota Across Multiple Body Habitats in Newborns,” Proceedings of the National Academy of Sciences of the United States of America 107, no. 26 (June 29, 2010): 11971–75.
35
G. V. Guibas et al., “Conception via In Vitro Fertilization and Delivery by Caesarean Section Are Associated with Paediatric Asthma Incidence,” Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 43, no. 9 (September 2013): 1058–66; L. Braback, A. Lowe, and A. Hjern, “Elective Cesarean Section and Childhood Asthma,” American Journal of Obstetrics and Gynecology 209, no. 5 (November 2013): 496; C. Roduit et al., “Asthma at 8 Years of Age in Children Born by Caesarean Section,” Thorax 64, no. 2 (February 2009): 107–13; M. C. Tollanes et al., “Cesarean Section and Risk of Severe Childhood Asthma: A Population-Based Cohort Study,” Journal of Pediatrics 153, no. 1 (July 2008): 112–16; B. Xu et al., “Caesarean Section and Risk of Asthma and Allergy in Adulthood,” Journal of Allergy and Clinical Immunology 107, no. 4 (April 2001): 732–33.
36
M. Z. Goldani et al., “Cesarean Section and Increased Body Mass Index in School Children: Two Cohort Studies from Distinct Socioeconomic Background Areas in Brazil,” Nutrition Journal 12, no. 1 (July 25, 2013): 104; A. A. Mamun et al., “Cesarean Delivery and the Long-term Risk of Offspring Obesity,” Obstetrics and Gynecology 122, no. 6 (December 2013): 1176–83; D. N. Mesquita et al., “Cesarean Section Is Associated with Increased Peripheral and Central Adiposity in Young Adulthood: Cohort Study,” PloS One 8, no. 6 (June 27, 2013): e66827; K. Flemming et al., “The Association Between Caesarean Section and Childhood Obesity Revisited: A Cohort Study,” Archives of Disease in Childhood 98, no. 7 (July 2013): 526–32; E. Svensson et al., “Caesarean Section and Body Mass Index Among Danish Men,” Obesity 21, no. 3 (March 2013): 429–33; H. T. Li, Y. B. Zhou, and J. M. Liu, “The Impact of Cesarean Section on Offspring Overweight and Obesity: A Systematic Review and Meta-Analysis,” International Journal of Obesity 37, no. 7 (July 2013): 893–99; H. A. Goldani et al., “Cesarean Delivery Is Associated with an Increased Risk of Obesity in Adulthood in a Brazilian Birth Cohort Study,” American Journal of Clinical Nutrition 93, no. 6 (June 2011): 1344–47; L. Zhou et al., “Risk Factors of Obesity in Preschool Children in an Urban Area in China,” European Journal of Pediatrics 170, no. 11 (November 2011): 1401–6.
37
T. Marrs et al., “Is There an Association Between Microbial Exposure and Food Allergy? A Systematic Review,” Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology 24, no. 4 (June 2013): 311–20 e8.
38
J. Penders et al., “Establishment of the Intestinal Microbiota and Its Role for Atopic Dermatitis in Early Childhood,” Journal of Allergy and Clinical Immunology 132, no. 3 (September 2013): 601–7 e8; K. Pyrhonen et al., “Caesarean Section and Allergic Manifestations: Insufficient Evidence of Association Found in PopulationBased Study of Children Aged 1 to 4 Years,” Acta Paediatrica 102, no. 10 (October 2013): 982–89; F. A. van Nimwegen et al., “Mode and Place of Delivery, Gastrointestinal Microbiota, and Their Influence on Asthma and Atopy,” Journal of Allergy and Clinical Immunology 128, no. 5 (November 2011): 948–55 e1–3; P. Bager, J. Wohlfahrt, and T. Westergaard, “Caesarean Delivery and Risk of Atopy and Allergic Disease: Meta-Analyses,” Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 38, no. 4 (April 2008): 634–42; K. Negele et al., “Mode of Delivery and Development of Atopic Disease During the First 2 Years of Life,” Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology 15, no. 1 (February 2004): 48–54.
39
M. B. Azad et al., “Gut Microbiota of Healthy Canadian Infants: Profiles by Mode of Delivery and Infant Diet at 4 Months,” CMAJ: Canadian Medical Association Journal 185, no. 5 (March 19, 2013): 385–94.
40
J. E. Koenig et al., “Succession of Microbial Consortia in the Developing Infant Gut Microbiome,” supplement 1, Proceedings of the National Academy of Sciences of the United States of America 108 (March 15, 2011): 4578–85.
41
G. D. Wu et al., “Linking Longterm Dietary Patterns with Gut Microbial Enterotypes,” Science 334, no. 6052 (October 7, 2011): 105–8.
42
G. D. Wu et al., “Linking Longterm Dietary Patterns with Gut Microbial Enterotypes,” Science 334, no. 6052 (October 7, 2011): 105–8.
43
J. Qin et al., “A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing,” Nature 464, no. 7285 (March 4, 2010): 59–65.
44
T. Yatsunenko et al., “Human Gut Microbiome Viewed Across Age and Geography,” Nature 486, no. 7402 (May 9, 2012): 222–7.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Здесь представлен ознакомительный фрагмент книги.Для бесплатного чтения открыта только часть текста (ограничение правообладателя). Если книга вам понравилась, полный текст можно получить на сайте нашего партнера.