Режим чтения
Скачать книгу

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей читать онлайн - Александр Панчин

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

Александр Панчин

“Сумма биотехнологии” Александра Панчина – это увлекательный научно-популярный рассказ о генетически модифицированных организмах (ГМО), их безопасности и методах создания, а также о других биотехнологиях, которые оказались в центре общественных дискуссий. Из книги вы узнаете все самое интересное о чтении молекул ДНК, возможности клонирования человека, создании химер, искусственном оплодотворении и генетической диагностике, о современных методах лечения наследственных заболеваний с помощью генной терапии, о перспективах продления человеческой жизни и победы над старением. В то же время в книге подробно разобраны популярные в обществе мифы, связанные с внедрением биотехнологий в практику, и причины возникновения ложных опасений.

Александр Панчин

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

Иллюстрации Олега Добровольского

Художественное оформление и макет Андрея Бондаренко

Книга содержит ГМО

Предисловие

Представьте, что вы – механик. Вы отлично знаете, что такое автомобиль, где у него аккумулятор, бензобак и как устроен его двигатель. Более того, вы собственноручно собирали автомобиль и давали друзьям покататься на нем. Внезапно вам заявляют, что автомобиль – это очень опасно. Но вовсе не потому, что на нем можно врезаться в столб (об этой опасности вы и сами всегда догадывались), а потому, что автомобиль, будучи искусственно модифицированной формой проверенной многими поколениями телеги, может повести себя непредсказуемо: взорваться, как водородная бомба, спонтанно катапультировать водителя из кресла, разогнавшись до скорости 200 км/ч, создать черную дыру в пространстве или внезапно обрести разум, восстать против человечества и начать маниакально давить пешеходов, как в фантастическом (и немного абсурдном) триллере писателя и режиссера Стивена Кинга “Максимальное ускорение”. Представьте, если бы любители этого фильма настаивали, что вселение в машины нечистой силы – правдоподобный и реалистичный сценарий!

Казалось бы, мало ли кто заблуждается? Есть ли необходимость переубеждать странного собеседника с такими необычными взглядами? Да, он считает, что автомобили – инструмент для уничтожения человечества. Да, он говорит, что автомобили нужно запретить. Ну и что? Но тут вскрывается еще один факт. Человек, от которого вы услышали теорию спонтанного катапультирования, – влиятельный депутат! И этот депутат уже заручился поддержкой миллионов людей и продвигает закон, запрещающий производство автомобилей. Тогда, как механик-автолюбитель, вы по-настоящему обеспокоитесь и, скорее всего, будете не только спорить, но и напишете про это книгу.

Я окончил факультет биоинженерии и биоинформатики МГУ. Наш курс был вторым выпуском этого на тот момент совершенно нового факультета. Когда я сдавал вступительные экзамены, в одном из билетов просили рассказать о перспективах развития биотехнологий. В своем ответе я написал о том, как был вдохновлен исследованиями, в которых с помощью генетических изменений в несколько раз продлили жизнь маленького круглого червяка – нематоды Caenorhabditis elegans. Сама перспектива, что и человеку можно подарить еще десять, двадцать, а то и больше лет жизни с помощью аналогичных подходов, мне казалась и продолжает казаться ужасно заманчивой.

Тогда у меня было наивное ощущение, что наступила эпоха модернизации и инноваций и что наша страна тоже созрела для того, чтобы идти вперед семимильными шагами и осваивать передовые биотехнологии. Вот-вот мы должны были начать массовое лечение наследственных заболеваний, выращивать искусственные органы, приостанавливать старение, улучшать наши умственные и физические способности, создавать более вкусные, питательные и полезные сорта фруктов и овощей, сажать в садах светящиеся в темноте деревья. Сложно было представить, что воплощение этих и многих других технологий в реальность столкнется не столько с техническими проблемами (хотя и такие имеются), сколько с непониманием и отторжением в обществе.

Сегодня мне сложно назвать область человеческого знания, вокруг которой существовало бы больше мифов, чем вокруг генной инженерии. Самое удивительное – большая часть этих мифов придумана весьма ограниченным числом людей (их можно пересчитать по пальцам), получивших, мягко говоря, не пропорциональное уровню их знаний в данной области внимание со стороны СМИ. Специалисты, которые непосредственно занимаются генной инженерией и молекулярной генетикой, как правило, предпочитают не тратить время на развенчание мифов, но мне такой подход кажется неверным, ну или как минимум недальновидным. Во всяком случае, кто-то должен этим заниматься.

Возможно, ситуация была бы несколько лучше, если бы ученые занимались наукой не только ради удовлетворения собственного интереса, но и для удовлетворения интереса окружающих, если бы научные знания с легкостью становились частью общественного достояния. Эта книга – попытка рассказать в доступной форме о том, какие существуют современные биотехнологии и почему их не нужно бояться.

Генная терапия, терапевтическое и репродуктивное клонирование, искусственное оплодотворение, генетическая диагностика, чтение ДНК, создание генетически модифицированных организмов – вот лишь часть наиболее актуальных и в то же время обсуждаемых в обществе тем, про которые мы поговорим. Особое внимание мы уделим генной инженерии. Сегодня это не только важное прикладное направление науки, но и главный способ изучения того, как устроена жизнь. Мы разберемся, что такое гены, как они меняются и работают, как переносятся из одного организма в другой в природе и в лаборатории.

Часть книги посвящена не столько биологическим вопросам, сколько проблемам неприятия генной инженерии и других биотехнологий в обществе: какую бы замечательную технологию мы ни придумали, если люди будут бояться ее применять, пользы от нее выйдет мало. В частности, мы попытаемся понять, в чем причина страха перед продуктами, созданными методами генной инженерии, кто и почему выдумывает о них мифы и какие негативные последствия могут иметь общественные заблуждения в этой области. Некорректные и ошибочные утверждения противников генной инженерии будут подробно препарированы на основании имеющихся научных фактов. Я надеюсь, что эта книга не только поможет читателям самостоятельно разобраться в вопросах, связанных с биотехнологиями, но и предоставит аргументы и необходимые знания, которые помогут им в дальнейшем просвещать других.

Генная инженерия и другие биотехнологии могут не только вылечить ранее неизлечимые заболевания, повысить качество и продолжительность жизни человека, но и существенно сократить ущерб, который человечество наносит окружающей среде. Мне импонируют альтруисты с активной жизненной позицией, которые стремятся защитить природу и сделать мир лучше, причем не только для себя. Тем обидней осознавать, что многие из них введены в заблуждение и потому негативно относятся к современным
Страница 2 из 23

биотехнологиям. Я надеюсь, что аргументы, изложенные в этой книге, помогут им направить свои усилия в более конструктивное русло.

Польский писатель, фантаст, философ и футуролог Станислав Лем закончил свою знаменитую “Сумму технологии” следующими словами: “Из двадцати аминокислотных букв Природа построила язык “в чистом виде”, на котором выражаются – при ничтожной перестановке нуклеотидных слогов – фаги, вирусы, бактерии, а также тираннозавры, термиты, колибри, леса и народы, если только в распоряжении имеется достаточно времени. Этот язык, столь атеоретичный, предвосхищает не только условия на дне океанов и на горных высотах, но и квантовую природу света, термодинамику, электрохимию, эхолокацию, гидростатику и бог весть что еще, чего мы пока не знаем! Он делает все это лишь “практически”, поскольку, все создавая, ничего не понимает. Но насколько его неразумность производительней нашей мудрости! Он делает это ненадежно, он – расточительный владетель синтетических утверждений о свойствах мира, так как знает его статистическую природу и действует в соответствии с ней. Он не обращает внимания на единичные утверждения – для него имеет вес лишь совокупность высказываний, сделанных за миллиарды лет. Действительно, стоит научиться такому языку – языку, который создает философов, в то время как наш язык – только философию”.

В своих произведениях Лем предвосхитил зарождение генной инженерии за многие десятки лет до появления этого метода искусственного редактирования жизни. Сегодня мы многое знаем про этот язык природы, и я думаю, что было бы хорошо, если бы все мы научились говорить на нем или хотя бы его понимать.

Глава 1

Евангелие от генной инженерии. ГМО – это хорошо

ДНК изучена очень хорошо: этой двухцепочечной молекуле посвящено более двух миллионов научных публикаций. Молекулу ДНК можно рассматривать как текст, написанный с использованием алфавита из четырех букв (нуклеотидов). Совокупность всех нуклеотидов, составляющих хромосомы любого организма (будь то бактерия, гриб или человек), называется геномом. Отдельные участки генома представляют собой обособленные функциональные элементы наследственности – гены. Сегодня, используя инструменты генной инженерии, мы умеем обращаться с генетическим материалом примерно так же, как со словами, напечатанными в текстовом редакторе. Гены можно удалять, изменять, переносить из генома одного организма в геном другого и даже синтезировать в пробирке. Организмы, наследственная информация которых изменена такими методами, называются генетически модифицированными (ГМ) и могут отличаться по некоторым своим свойствам от тех исходных организмов, из которых они были выведены.

Помните, как после укуса радиоактивного паука герой комиксов и нескольких фильмов Питер Паркер становится человеком-пауком? Хотя человека-паука с помощью генной инженерии пока не получили (или он очень хорошо скрывается), оказалось, что не сложно создать козу-паука. В 2002 году в одном из самых престижных научных журналов Science появилась статья о том, что генетически модифицированные клетки млекопитающих могут производить паутину

. Канадская фирма Nexia вывела коз, в геном которых был встроен ген белка паутины, и показала, что молоко этих коз можно использовать в качестве сырья для получения материала под названием биосталь.

Биосталь оказалась прочнее и легче кевлара – материала, из которого делаются современные бронежилеты. Недавно в Японии аналогичным образом улучшили шелк, изменив геном шелкопряда. Шелк с примесью белков паутины прочнее и эластичнее обычного

, он лучше подходит для создания хирургических нитей. Отдельные созданные учеными варианты белков паутины даже обладают антимикробными свойствами

.

Другим козам в геном смогли встроить ген антибактериального белка лизоцима

. В норме этот белок содержится в грудном молоке женщин, защищая от инфекционных воспалений груди. Потребление обогащенного лизоцимом молока генетически модифицированных коз может защитить многих детей разного возраста от инфекционных заболеваний желудочно-кишечного тракта. Эти болезни являются причиной смерти от одного до двух миллионов детей ежегодно. Еще одно изобретение – изготовление кошерного сыра. Традиционно для изготовления сыра берется сычуг (отдел пищеварительного тракта жвачных животных), высушивается и помещается в молоко. Сычуг содержит сычужные ферменты, превращающие молоко в сыр, но в Ветхом Завете сказано: “Не вари козленка в молоке его матери”, и такой сыр, полученный из мяса и молока, – пища, неугодная Богу из Торы. Генные инженеры взяли гены сычужных ферментов и встроили их в геном бактерии. Такие бактерии вырабатывают сычужные ферменты, а мы с их помощью можем получать кошерный сыр без использования кишки жвачных животных. Никогда еще наука так тесно не сотрудничала с религией.

Недавно генным инженерам удалось встроить в геном томата ряд генов львиного зева (ярко окрашенных цветов, как правило желтых, фиолетовых или синих, напоминающих по форме цветка львиную пасть), чтобы увеличить производство особых веществ – антоцианов. В норме антоцианы присутствуют в большом количестве в голубике, ежевике и черной смородине, которым они придают характерный темно-синий цвет. Употребление антоцианов связывают со сниженным риском развития некоторых форм рака

, сердечно-сосудистых заболеваний

и ожирения (как было показано в опытах на грызунах)

. В одном исследовании мыши, генетически предрасположенные к раку, которых кормили ГМ помидорами, обогащенными антоцианами, жили в среднем на 25 % дольше!

Хотя существуют селекционные сорта “синих” помидоров с повышенным содержанием антоцианов в кожуре, в ГМ помидорах антоцианы производятся и в мякоти, поэтому итоговое их содержание намного выше и сопоставимо с содержанием в вышеупомянутых ягодах.

Благодаря антоцианам подобные генетически улучшенные помидоры примерно вдвое дольше хранятся и значительно меньше подвержены воздействию плесени. Их можно собирать позже, а это дает им возможность выработать больше питательных веществ. К сожалению, я пока не могу попробовать эти помидоры и сказать, что они вкуснее (хотя их создатели утверждают, что это так), ведь в связи с жестким регулированием ГМО томатам предстоит пройти целый ряд проверок, прежде чем они окажутся на прилавках магазинов.

Генная инженерия играет огромную роль и в современной медицине. В 1978 году были созданы первые трансгенные бактерии, вырабатывающие человеческий инсулин (белковый гормон, регулирующий углеводный обмен в организме), а сегодня подавляющее большинство препаратов инсулина, поддерживающих жизнь миллионов людей, больных диабетом, производят генетически модифицированные микроорганизмы

. Аналогично с помощью генетически модифицированных организмов производят факторы свертывания крови для больных гемофилией (врожденным заболеванием, при котором плохо сворачивается кровь)

и гормон роста для детей с генетически обусловленной низкорослостью

. Есть и более экзотичные разработки, например по созданию безобидных генетически модифицированных бактерий, которые смогут защищать
Страница 3 из 23

зубы от кариеса, устраняя вредных бактерий

, или уберечь человека от ожирения

.

Генетически модифицированные растения могут применяться для производства антител (молекул, используемых иммунной системой для распознания вирусов, бактерий и других чужеродных объектов), гормонов, вакцин и ферментов. Например, ученые научились производить внутренний фактор человека в растениях

. Внутренний фактор секретируется желудком и переводит неактивную форму витамина B12, поступающую с пищей, в активную, которую легко усвоить. Витамин B12 очень важен для жизнедеятельности нашего организма. В частности, он необходим для нормального протекания процесса репликации – удвоения молекул ДНК в клетках, происходящего перед их делением. У некоторых людей секреция внутреннего фактора нарушена. Это может быть связано, например, с аутоиммунными заболеваниями или гастритом. Такие люди плохо усваивают витамин B12 из пищи и заболевают злокачественным малокровием. Сейчас это заболевание лечится инъекциями витамина B12, но налаженное производство внутреннего фактора благодаря развитию генной инженерии позволит заменить уколы препаратами, принимаемыми вместе с едой.

Раньше считалось, что наследственные заболевания, при которых некоторые гены человека не функционируют или плохо функционируют в результате мутаций, принципиально неизлечимы. Но теперь в руках врачей появился новый метод лечения – генная терапия. Он основывается на внесении работающих копий недостающего или неисправного гена в клетки человека с помощью видоизмененных вирусов. Сегодня благодаря генной терапии лечатся некоторые формы врожденной слепоты

, иммунодефицита

и даже рака. В последнем случае создаются специальные генетически модифицированные иммунные клетки человека (лимфоциты), способные к более эффективному поиску и уничтожению раковых клеток

. Эти технологии уже сегодня спасают жизни, но, увы, доступны пока немногим.

Сложно понять, почему генная инженерия не пользуется популярностью среди защитников окружающей среды, ведь ее можно использовать для уменьшения негативного влияния человечества на природу. Взять хотя бы проект Enviropig, или “Экосвинка”

. Всем живым существам для развития нужен фосфор. Большая часть фосфора в стандартном корме для свиней находится в такой форме, которая свиньями не усваивается, – в форме фитатов, солей фитиновой кислоты. В результате возникают две проблемы. Во-первых, свиней нужно подкармливать фосфором в виде пищевых добавок. Во-вторых, весь неусвоенный фосфор оказывается в свином навозе. Навоз смывается водой, и его компоненты в огромном количестве попадают в близлежащие водоемы, в которых вскоре начинается цветение – разрастание водорослей, которые, в отличие от свиней, прекрасно усваивают фитаты! Из-за цветения в водоемах повышается содержание ядовитых веществ, продуктов метаболизма водорослей. Погибают рыбы и многие другие водные организмы, возникает локальная экологическая катастрофа.

Именно поэтому и придумали “экосвинок” – генетически модифицированных свиней, способных усваивать фитаты. Они способны на это потому, что в их геном встроили ген, кодирующий фермент, необходимый для расщепления фитатов, позаимствованный из кишечной палочки. Была надежда, что люди, обеспокоенные проблемой загрязнения окружающей среды, поддержат технологию и предпочтут “экосвинку” обычным свиньям. Но надежда не оправдалась – неприязнь к ГМО оказалась сильнее любви к природе. Создатели “экосвинки” до сих пор не нашли партнеров, которые вывели бы продукт на рынок, но этот подход существует и ждет момента, когда общественное сознание будет готово принять новую технологию.

В фильме Джеймса Кэмерона “Аватар” инопланетная флора и фауна на планете Пандора светились, и этот свет заменял жителям планеты искусственное освещение. Генная инженерия позволяет создавать светящиеся в темноте растения, отчасти воплощающие эту фантастическую мечту в реальность. Необходимые для свечения гены были заимствованы у светлячков

. Представьте, что вы сможете устроить романтический ужин, но вместо свечей его будут освещать зеленые ростки. Или что такие удивительные растения могут расти в парке, по обочине дороги. И снижать опасность парка вечером для вашей дочери-подростка! Едва ли данный подход решит все энергетические проблемы человечества, но это новый экологически чистый источник света, прекрасный символ зеленой энергетики. Увы, как и в случае с “экосвинкой”, проект не был широко поддержан защитниками окружающей среды. Более того, под давлением общественного мнения площадка Kickstarter, где осуществлялся добровольный сбор пожертвований на развитие проекта, запретила основателям проекта предлагать спонсорам семена светящихся растений.

Гены флуоресцентных белков некоторых кораллов или медуз можно встроить в геном бабочки таким образом, что глаза насекомого засветятся зеленым при облучении ультрафиолетом

. Такие бабочки представляют не только научную, но и эстетическую ценность, а также особый интерес для коллекционеров (я не шучу!). Аналогично получены светящиеся в ультрафиолете рыбки, мыши, кролики и кошки. И кстати, о кошках! Посредством генной инженерии можно создать гипоаллергенных домашних любимцев для людей, страдающих аллергией

. В этом, конечно, найдется и определенный минус, ведь аллергия является для некоторых хорошим (а порой и единственным) аргументом, чтобы не дать завести домашнее животное соседу или соседке по комнате в общежитии или своей второй половине.

По данным Всемирной организации здравоохранения, десятки миллионов людей страдают от пищевой аллергии, которая распространена прежде всего среди детей. Только в США каждые три минуты кто-то оказывается в неотложке из-за острой аллергической реакции на еду

. Чаще всего аллергия возникает на арахис, другие бобовые и орехи, на крабов, креветок и рыбу, но иногда даже на яблоки. Во многих случаях известно, какой именно белок вызывает аллергию, поэтому можно создать генетически модифицированный организм без этого белка или с меньшим его содержанием. Такой организм будет безопасен для аллергиков. Разработки по созданию гипоаллергенных яблок и некоторых других продуктов уже ведутся

.

Всемирная организация здравоохранения предупреждает о возможных негативных последствиях чрезмерного употребления сахара

. А что делать, если хочется сладкого, но не хочется рисковать здоровьем? Тропическое растение Thaumatococcus danielli содержит ген, кодирующий белок тауматин, который в тысячи раз слаще сахара. Так давайте употреблять пищу с тауматином!

Увы, природных источников тауматина довольно мало. Поэтому генные инженеры работают над созданием микроорганизмов

и растений, производящих этот белок. Первые призваны служить источником тауматина, а вторые могут просто иметь экзотичные вкусовые качества. Приятным дополнительным эффектом внедрения тауматина в растения является их повышенная устойчивость к ряду инфекций

. Конечно, вкус тауматина немного отличается от вкуса сахара и некоторым может не нравиться. Но и тут придет на помощь генная инженерия: почему бы не попробовать изменить ген тауматина, чтобы
Страница 4 из 23

создать белок с более приятным вкусом? Возможно, в будущем появится особая “генетическая кулинария”, когда повара станут соревноваться в создании самых вкусных белков и их сочетаний?

Генная инженерия нашла применение даже в современном искусстве. Например, есть технология, которая называется ДНК-оригами. Представьте: мы смешиваем определенные последовательности молекул ДНК в пробирке, а потом под мощным электронным микроскопом видим, что эти молекулы соединились друг с другом, причем строго определенным образом, образуя наноструктуры заранее выбранной формы. Это может быть звездочка, треугольник, буква алфавита или даже смайлик. Идея принадлежит американскому ученому Полу Ротмунду, а его работа “Складывание ДНК для создания фигурок в наномасштабе” в 2006 году была опубликована в журнале Nature

. Впоследствии ДНК-оригами даже нашло потенциальное практическое применение. С его помощью возможно создание трехмерных сверхмалых “ящиков” из ДНК, хранящих и доставляющих лекарственные средства в клетки

.

Генная инженерия уже применяется в самых разных сферах человеческой жизни – от искусства и развлечений до лечения наследственных заболеваний, а также в рамках фундаментальных научных исследований. Но центральной темой общественных и политических дискуссий, связанных с генной инженерией, является использование генетически модифицированных организмов в качестве продуктов питания.

На сегодняшний день население Земли составляет около 7 миллиардов человек, и все эти люди хотят есть, пить и выращивать детей. Несмотря на все достижения в области производства пищи, около миллиарда людей на планете получают недостаточно еды, чтобы восполнить энергетические потребности организма. Еще около миллиарда людей страдают от нехватки витаминов и других питательных веществ из-за неполноценного питания. В том числе от недоедания страдают около 165 миллионов детей в возрасте до пяти лет. И это вопреки тому, что на протяжении истории человечества ситуация постепенно улучшалась: доля недоедающих убывала благодаря многочисленным прорывам в области сельского хозяйства.

В десятом тысячелетии до нашей эры человечество впервые научилось отбирать и культивировать такие растения, как ячмень, горох, чечевица, нут. В XV веке происходит глобальный обмен культурными растениями: помидорами, картофелем, какао, специями, кофе, сахарным тростником. Растения попадают в новые экосистемы, адаптируются к новым условиям жизни. Существенная часть прироста массы и разнообразия сельскохозяйственной продукции произошла за счет изменений генов живых организмов

. Сравните, например, дикую кукурузу теосинте, имеющую маленький, тоньше пальца невзрачный колосок, и современную крупную и сладкую кукурузу, выведенную благодаря селекции. Посмотрите, как отличаются между собой по цвету, вкусу и запаху разные сорта помидоров, яблок, винограда. Разные породы коров тоже могут отличаться количеством и качеством производимого молока. Источником этого разнообразия являются мутации – генетические изменения.

Изменения в генах культурных растений фиксировались людьми как осознанно, так и неосознанно, когда они выбирали, что сеять, а что нет, или скрещивали растения разных сортов. При скрещивании отдаленных родственников возникают новые комбинации вариантов генов (аллелей), и, как следствие, появляются новые комбинации свойств. Позже выяснилось, что можно получать новые сорта растений, воздействуя на них радиационным излучением или определенными химическими веществами – мутагенами. Радиация вызывала многочисленные мутации, изменения сразу большого числа генов. Лишь некоторые изменения были полезными, а многие – вредными.

От вредных мутаций приходилось избавляться путем последовательного скрещивания новых форм между собой, пока в результате интенсивного отбора не оставались достаточно здоровые особи с новыми признаками. Но никогда эта технология не гарантировала, что в результате мутаций и многочисленных скрещиваний не изменится какое-то другое важное свойство растения, например содержание каких-нибудь питательных веществ. На смену таким не слишком предсказуемым и не слишком эффективным технологиям пришла генная инженерия, которая дает возможность целенаправленно менять наследственную информацию живых организмов. Если в основе селекции лежат случайные генетические изменения и искусственный отбор, то в основе генной инженерии лежит продуманный до деталей акт творения.

Конечно, генная инженерия не является единственным способом модернизации сельского хозяйства. Едва ли ее вклад на данный момент сопоставим с появлением тракторов и комбайнов, существенно облегчающих вспашку, а также сбор и транспортировку урожая. Я также не думаю, что удастся победить голод, не решив проблему распределения пищи, ведь зачастую дело не в ее физической нехватке. Тем не менее генная инженерия позволяет значительно увеличить урожайность полей, поднять качество продуктов питания, в ряде случаев снизить издержки производства и, как следствие, цены на продукты питания и сделать их доступнее.

Более эффективное производство означает, что меньше земель будет использовано под сельскохозяйственные нужды и меньший ущерб будет нанесен окружающей среде: вместо разрушения природных экосистем для превращения их в поля мы можем выращивать больше еды на меньшей территории. Для удовлетворения голода нам не придется вырубать леса и осушать болота, которые, будучи сложными и богатыми экосистемами, служат домом для многочисленных форм флоры и фауны – от одноклеточных организмов до насекомых, млекопитающих и птиц.

Двести лет назад один человек, работающий на ферме, едва мог прокормить собственную семью. Как следствие, в производстве еды была вынуждена участвовать большая часть населения, все должны были работать на полях. В 1940 году, по данным Департамента сельского хозяйства США, один фермер в среднем мог прокормить 19 человек, а сейчас – 155! Интенсификация сельского хозяйства приводит к тому, что все больше и больше людей могут заниматься не производством пищи, а чем-то еще, в том числе быть художниками, учеными, музыкантами, программистами, инженерами. Эффективное сельское хозяйство способствует развитию культуры и технологий.

Есть еще одна заслуга генной инженерии, связанная с уменьшением нагрузки, которой сельское хозяйство подвергает окружающую среду. Вместо того чтобы поливать поля инсектицидами с самолетов, невольно поражая соседние с полями участки земли и некоторых ни в чем не виновных членистоногих, мы можем создать растения, несъедобные для вредителей. Борьба с вредителями становится точечной, с меньшим количеством побочных эффектов. Генные инженеры умеют делать так, чтобы ядовитый для вредителей белок производился только в определенной части растения, например в листьях картошки, которые едят личинки колорадских жуков, но не в клубнях. Кроме того, используются белки, ядовитые не для всех насекомых, а только для отдельных групп, к которым и относятся вредители. Это безопаснее и эффективнее, чем массовая обработка полей ядохимикатами.

В 2014 году вышла статья в научном журнале PLOS ONE

об изменениях на
Страница 5 из 23

фермах, где выращивали два типа растений, созданных методами генной инженерии. Благодаря растениям, устойчивым к вредителям, урожайность полей увеличилась почти на 25 %, количество используемых пестицидов сократилось на 42 %, затраты на покупку пестицидов уменьшились на 43 %. Благодаря устойчивым к гербицидам растениям урожайность полей увеличилась на 9 %, количество используемых пестицидов не изменилось, но затраты на их покупку сократились на 25 % за счет перехода на более выгодные средства борьбы с сорняками. В обоих случаях доходы фермеров выросли более чем на 60 %. То, что внедрение упомянутых ГМО снижает количество используемых пестицидов, независимо подтвердил в своем отчете Американский департамент сельского хозяйства (USDA)

.

В 2012 году в журнале Nature была опубликована статья, в которой было показано, что в период с 1990 по 2010 год в Северном Китае благодаря внедрению генетически модифицированных растений, устойчивых к вредителям, и, следовательно, снижению использования пестицидов удалось не только уменьшить количество вредных насекомых на полях, но и увеличить количество трех групп членистоногих-хищников: божьих коровок, пауков и златоглазок. Более того, хищники, которых стали меньше травить инсектицидами, расползались на соседние поля, и количество вредителей уменьшалось по всей округе

.

Снижение количества используемых пестицидов и самолетного топлива, необходимого для их распыления, увеличение урожая полей без освоения новых земель и разрушения природных экосистем, светящиеся растения и экологически более чистое животноводство… Я хочу, чтобы все, кому не безразлично состояние окружающей среды, еще раз задумались о положительных перспективах внедрения биотехнологий.

Еще один триумф ждал генную инженерию в борьбе с вирусами растений. В период с 1956 по 1968 год из-за вирусных инфекций площади плантаций папайи на острове Оаху Гавайского архипелага сократились с 243 гектаров до 16 (более чем на 94 %). Карантин и долгие попытки вывести устойчивые к вирусу сорта методами традиционной селекции не помогли остановить инфекцию. Выращивание папайи практически прекратилось. В 1991 году были проведены полевые испытания генетически модифицированной папайи, устойчивой к вирусу. Через 77 дней после начала испытаний 95 % обычной папайи, произраставшей на экспериментальных полях, оказались зараженными, но ни одно трансгенное растение не пострадало

. После ряда дополнительных проверок и испытаний в 1998 году коммерческое выращивание гавайской генетически модифицированной папайи было одобрено, а производство этого растения восстановлено.

Но сколько бы замечательных продуктов генной инженерии ни придумало человечество, будет мало толку, если никто не захочет их использовать. Страх перед ГМО распространен по всему миру, он влияет на решения политиков и тормозит развитие биотехнологий. Мы не сможем двигаться дальше, пока не разберемся в причинах этого страха и не попробуем его развеять.

Глава 2

Слово из трех букв. Слово “ГМО” – это плохо

Ученые начали употреблять словосочетание “генетически модифицированный организм” сравнительно недавно. Первая статья в базе данных научных публикаций по биологии и медицине PubMed с упоминанием аббревиатуры “ГМО” датируется 1992 годом

. Можно сказать, что даже сами генетически модифицированные организмы изучены лучше, чем это слово (ГМ бактерии

и животные

существуют с 1973 года, ГМ растения с 1982 года

, а коммерческие ГМ растения с 1994-го).

Противники генной инженерии говорят, что безопасность ГМО не доказана на 100 %, но мы пойдем на шаг дальше и сформулируем утверждение, что на 100 % не доказана даже безопасность употребления слова “ГМО”. Именно поэтому обложка предупреждает, что книга содержит упоминания данного слова из трех букв. Наука – это постоянное и честное стремление к истине, но никогда не истина в последней инстанции. Да, мы предполагаем априори, что все слова безопасны, исходя из представления о безопасности тех слов, которые давно вошли в употребление, но ведь мы можем ошибаться!

Не существует абсолютных доказательств того, что слово “ГМО” не повредит здоровью человека, его услышавшего, произнесшего, написавшего или прочитавшего, либо здоровью его потомков во втором или в третьем поколении. Даже если принять, что по отдельности буквы Г, М и О существуют в естественном для нас языке достаточно давно и потому предположительно безопасны (хотя и этот вопрос никогда серьезно не исследовался), аббревиатура “ГМО” была создана искусственно и недавно.

У нас нет стопроцентных доказательств того, что слово “ГМО” не может вызывать у людей аутоиммунные заболевания, рак, аллергию, понос, запор, нежелательную беременность, алкогольную зависимость, болезнь Альцгеймера, рвоту, геморрой, аутизм, суицидальные мысли, избыточный вес, инсульт, сердечный приступ, выпадение волос, шизофрению, утрату зрения, слуха, ослабление иммунной системы, паралич дыхательной мускулатуры, прыщи, воспаление внутреннего уха или аппендикса, депрессию, камни в почках или импотенцию.

Между тем не секрет, что слова, которые мы читаем, слышим, произносим или записываем, воздействуют на наши органы чувств и, как следствие, на мозг. Более того, в результате этого воздействия иногда могут рождаться мысли. Когда мы сталкиваемся с каким-то словом, нервные клетки мозга начинают взаимодействовать друг с другом с помощью электрических сигналов, бегущих по их отросткам – аксонам. Измененная работа нервных клеток может привести к выбросу определенных гормонов в кровь. Не исключено, что это может подействовать на остальные клетки организма, в том числе на клетки репродуктивной системы. Нет стопроцентных доказательств, что это совершенно безопасно и не приводит к повреждению клеток или к мутациям в ДНК.

Существует еще один риск, связанный с использованием слова “ГМО”. Риск заключается в том, что это слово может “убежать” за границы текущих смысловых значений и вытеснить другие слова из языка. Статистика запроса “GMO” в Google Trends указывает на то, что частота употребления этого слова сегодня достигла небывалых значений. Вполне возможно, что его ждет популярность другого слова из трех букв, которое не принято произносить в приличном обществе. Если мы не остановим распространение слова “ГМО”, будущее нашего языка может быть незавидным: “ах ты ГМО такое!”, “не надо мне это ГМО”, “сам ты ГМО!”.

Множество журналистов, ученых и политиков делают карьеру, используя слово “ГМО”. Оно постоянно упоминается в блогах, научных и научно-популярных статьях, в желтой прессе, на радио, на ТВ, на просторах интернета и даже в книжках. Разумеется, на употреблении этого слова неплохо зарабатывают. Возможно, именно поэтому так сложно найти желающих провести серьезные исследования влияния слова “ГМО” на здоровье людей или животных. Кто знает, какие результаты может дать эксперимент, в ходе которого одна группа крыс будет слушать в наушниках повторяющееся слово “ГМО”, а другая, контрольная группа – проверенное временем “Отче наш”? Не найдем ли мы каких-нибудь отличий в количестве и качестве потомства между группами? Если опасность слова “ГМО” будет обнаружена, удастся ли
Страница 6 из 23

нам пробиться через сплошь ангажированных рецензентов и опубликовать об этом статью в научном журнале? Пока риски употребления слова “ГМО” не будут досконально изучены, необходимо придерживаться принципа предосторожности и не допускать его использования кроме как в исследовательских целях. Как минимум необходимо ввести обязательную маркировку текстов, передач и сообщений, упоминающих ГМО.

Выше я попробовал довести до абсурда самые примитивные аргументы против генетически модифицированных организмов (есть и другие, более наукообразные, которые мы разберем позже). Эти аргументы примитивны потому, что с тем же успехом их можно применить к любой новой технологии, не потратив ни минуты на изучение обсуждаемого предмета. Про любое новое явление можно сказать, что оно не проверено временем. Даже если безопасность некой технологии проверена на животных или на людях, мы всегда можем выкрутиться и заявить, что она не проверена на следующем поколении. А если она проверена на втором поколении, можно потребовать проверки на третьем и так до бесконечности.

На нескольких поколениях не проверено действие мобильных телефонов, беспроводной связи, продуктов, подогретых в микроволновых печах. Клинические испытания современных лекарственных средств обходятся в сотни миллионов долларов, занимают много лет, но даже сильнодействующие препараты не проверяются на нескольких поколениях. Следуя такой логике, необходимо отказаться от всех достижений научно-технического прогресса за последние лет тридцать, а то и больше.

Почему мы знаем, что слово “ГМО” не очень опасно? Потому что мы знаем, что слова обычно не очень опасны, и дедуктивно выводим относительную безопасность и этого слова. Если мы придерживаемся рационального взгляда на мир и не верим, что существуют волшебные слова, которые могут наслать на нас проклятие (АВАДАКЕДАВРА! ИМПЕРИО!), и не говорим о тех сочетаниях слов, за которые нас, к сожалению, могут посадить в тюрьму в некоторых странах, никто в здравом уме не сочтет необходимым как-то особенно относиться к слову “ГМО”, ведь это всего лишь комбинация букв, такая же, как и все остальные слова. Точно так же ДНК генетически модифицированных организмов – это всего лишь молекула ДНК, такая же, как у всех других живых организмов, и состоящая из тех же самых “букв” – нуклеотидов, лишь с небольшими отличиями в том порядке, в котором эти буквы расставлены.

На самом деле нам есть что сказать про опасность слов. В 2013 году в журнале психосоматических исследований (Journal of Psychosomatic Research) был опубликован следующий эксперимент

: одной группе испытуемых показали фильм о вреде беспроводной связи (Wi-Fi), второй группе показали фильм о безопасности используемого излучения. После просмотра фильмов экспериментаторы сказали всем участникам эксперимента, что их будут облучать Wi-Fi. Хотя на самом деле Wi-Fi никто не включал, многие люди из первой группы, которых запугали страшилками о вреде такого излучения, заявили, что испытали неприятные симптомы, дискомфорт, ухудшение самочувствия. Некоторые участники даже попросили прекратить эксперимент – настолько им стало не по себе. Подобные негативные эффекты наблюдались в первой группе существенно чаще, чем во второй.

За последние несколько лет мы многое узнали про эффект плацебо (фальшивого лекарства – пустышки), отчасти объясняющий кажущуюся эффективность гомеопатических препаратов и множества других средств “альтернативной” медицины. Эффект плацебо срабатывает, когда человек ожидает, что некоторое воздействие улучшит его самочувствие. При этом его мозг выделяет определенные вещества (например, эндорфины), которые поднимают настроение и уменьшают болевые ощущения. В этом нет никакой магии – обычная физиологическая реакция, и эффект плацебо действительно справляется с болью и рядом других симптомов.

Не буду вдаваться в подробности нейробиологических механизмов эффекта плацебо, хотя они неплохо изучены

, но отмечу, что плацебо действует даже на животных

. Например, используя этот эффект, удавалось уменьшить частоту эпилептических припадков у собак

. Одно из объяснений заключается в том, что многие животные легко вырабатывают условные рефлексы – здесь можно отослать к знаменитым опытам отечественного нейрофизиолога Ивана Павлова. Павлов показал, что если зажигать лампочку, а потом кормить собаку, она обучается и впоследствии начинает вырабатывать слюну сразу после включения лампочки, когда еда еще не появилась. Прием плацебо часто сочетается с заботой и уходом, на которые собака положительно реагирует. Параллельно возникает “эффект хозяина”. Владелец меняет отношение к питомцу, ожидая улучшения его здоровья, что может приводить к изменениям поведения и состояния животного

.

На людей плацебо-инъекции действуют сильнее, чем сахарные таблетки. Сила действия таблеток зависит от их цвета

, а также от заявленной цены таблеток и вообще убедительности, с которой рассказано об их полезности

. За открытие, что дорогие плацебо более эффективны, чем дешевые, Дэн Ариэли, специалист по поведенческой экономике, получил Шнобелевскую премию. Этой шуточной премией, пародирующей знаменитую Нобелевскую, награждают за всякие забавные открытия. “Когда вы ожидаете, что что-то произойдет, ваш мозг делает так, чтобы это произошло”, – прокомментировал свое исследование ученый.

Довольно наглядно эффективность плацебо была показана в передаче фокусника Даррена Брауна “Страх и вера”. Браун ознакомился с научными исследованиями о том, как усилить эффект плацебо, и разработал “суперплацебо” для лечения страхов. Так, чтобы убедить участников эксперимента в эффективности выдуманного препарата от страха (на самом деле препарата-пустышки), был создан целый фальшивый институт-однодневка якобы по исследованию и производству данного “лекарства”. Внутри стен “института” специально обученные актеры, одетые в халаты, с умным видом и кучей научных терминов читали участникам-добровольцам лекции о чудесных свойствах и механизмах действия разрабатываемого ими препарата. Все было сделано так, чтобы создать максимально правдоподобную иллюзию научности и обоснованности предлагаемого лечения. В передаче было показано, что суперплацебо дало заметный результат. Молодой человек, который боялся высоты, смог свесить ноги с края высокого моста, девушка со страхом публики не испугалась выступить перед широкой аудиторией и спеть песню, а человек, всю жизнь избегавший конфликтов, пошел разнимать дерущихся в баре.

Стоит оговориться, что терапевтическая ценность эффекта плацебо в медицине, по-видимому, не велика

. Часть того, что иногда приписывают эффекту плацебо, является регрессией к среднему

, результатом естественного улучшения самочувствия пациентов, которое нередко происходит независимо от того, что с ними делают. Здесь полезно различать ощущения пациента (где существует широкий простор для действия эффекта плацебо) и объективные изменения его здоровья. Именно поэтому Гудвину удалось внушить Страшиле мудрость, Дровосеку – нежность, а Льву – храбрость, подарив им фальшивые мозги, сердце и эликсир смелости, но так и не удалось помочь
Страница 7 из 23

бедной Элли, проблема которой не решалась самовнушением.

Ожидание ухудшения самочувствия может приводить к обратному эффекту – эффекту ноцебо. В дополнение к описанному выше эксперименту c Wi-Fi рассмотрим еще одну публикацию, авторы которой задались следующим вопросом: влияет ли молитва на количество осложнений у людей, переживших операцию на сердце?

Для того чтобы ответить на этот вопрос, пациентов случайным образом разбили на три группы. Первой группе сообщили, что за них, возможно, будут молиться (а возможно, не будут), – и за них молились. Пациентам второй группы сообщили то же самое, но за них не молились. Пациентам третьей группы сказали, что за них совершенно точно будут молиться, и за них действительно молились.

Оказалось, что сама по себе молитва не имеет никакого терапевтического эффекта: люди из первых двух групп перенесли примерно одинаковое количество осложнений. Но у людей, знавших, что за них будут молиться, выявили больше осложнений после операции. Возможно, пациенты, уверенные, что за них будут молиться, начинали волноваться (“все так плохо, что за меня уже молятся?”) и тем самым повышали риск осложнений. Ведь волноваться после операции на сердце небезопасно.

Приведу еще одну поучительную историю. В 1968 году Роберт Хо Ман Квок написал в один из ведущих медицинских журналов письмо о том, что после походов в китайские рестораны он странно себя чувствовал

. Симптомы, которые он описал, включали онемение задней части шеи, постепенно распространяющееся к обеим рукам и спине, слабость, усиленное сердцебиение. Эти симптомы наступали примерно через 15–20 минут после употребления первого блюда. Хо Ман Квок назвал это “синдромом китайских ресторанов”.

Хо Ман Квок не мог точно определить, что именно послужило причиной изменения его самочувствия. Был ли он чем-то болен? Испытал ли он на себе действие эффекта ноцебо? Была ли у него аллергия на один из многих компонентов приготовленных блюд? Может быть, ему просто не повезло – досталась не самая свежая рыба? Одна из версий предполагала, что описанные симптомы связаны с действием глутамата натрия. Возникла такая гипотеза потому, что в китайских ресторанах традиционно не стесняются использовать этот усилитель вкуса.

Несмотря на отсутствие серьезных оснований подозревать, что именно глутамат натрия является причиной описанных симптомов, история, рассказанная Хо Ман Квоком, положила начало массовой истерии, продолжающейся вот уже почти пятьдесят лет. Многие журналисты приравняли глутамат натрия к страшному яду, время от времени появляются депутаты, предпринимающие попытки запретить его использование. На самом деле глутамат натрия – натриевая соль глутаминовой кислоты, одной из важнейших аминокислот, входящей в состав практически любого белка (а белки есть в любых клетках). Природа даже предусмотрела специальные рецепторы для этой аминокислоты. Все знают четыре основных вкуса: кислое, сладкое, соленое, горькое. Есть пятый вкус, который называется “умами”, или вкус мяса, вкус глутамата. Любопытно, что ни само мясо, ни томаты, имеющие высокое содержание глутамата, не вызывали описанных Хо Ман Квоком симптомов.

По мере распространения новости о том, что глутамат может вызывать странные симптомы, некоторые люди стали утверждать, что они чувствительны к глутамату натрия. Большая часть населения никогда не сталкивалась с описанными Хо Ман Квоком симптомами, но были и те, кто повторял его рассказ. Но что, если чувствительность к глутамату – следствие внушаемости? Проводились исследования, в которых испытуемые не знали, принимают они глутамат натрия или плацебо. Поскольку глутамат натрия отличается особым вкусом, в ряде экспериментов подбирали специальный напиток, который этот вкус маскировал. Исследования показали, что если и есть какие-то симптомы, связанные с употреблением глутамата натрия, то это скорее идиопатическая реакция, основанная на эффекте ноцебо. Разницы в самочувствии между теми, кто употреблял глутамат и плацебо, не наблюдали, если глутамат употреблялся с пищей в количествах, используемых в кулинарии

.

Поведение “чувствительных” к глутамату людей в каком-то смысле напоминает эпизод, описанный еще в XIX веке в повести Джерома Клапки Джерома “Трое в лодке, не считая собаки”, когда герой книги открыл медицинский справочник и нашел у себя все болезни за исключением родильной горячки.

Существует легенда, повествующая об “эффекте 25-го кадра”. Это вымышленная и неработающая методика воздействия на подсознание людей посредством монтирования в видеоряд скрытой рекламы. Реклама вставляется с помощью дополнительных кадров, которые проскакивают так быстро, что человек не успевает их разглядеть. В январе 1958 года телекомпания Canadian Broadcasting Company провела (не очень научный) эксперимент, в ходе которого предупредила зрителей, что будет показывать скрытую рекламу. На протяжении получасового шоу 352 раза было показано сообщение “позвони сейчас”, но очень быстро, чтобы никто не разглядел. Никакого заметного увеличения количества телефонных звонков не было зафиксировано ни во время передачи, ни после нее. Никто не мог отгадать истинное послание скрытой рекламы, зато многие телезрители писали в телекомпанию письма о том, что у них возникали необъяснимые позывы взять банку пива, сходить в туалет или переключить канал. Хотя сам эффект 25-го кадра не работает, сообщение о его применении вполне может подействовать на тех, кто верит в эффективность скрытой рекламы.

Все перечисленное, вероятно, справедливо и для устрашающих рассказов о том, что наша пища ужасно ядовита и опасна. Особенно пища, содержащая ГМО. Это тем более удивительно, если учесть, что еще никогда в истории человечества не существовало столь строгого контроля качества продуктов питания, как сейчас.

Рассказывая людям об опасностях тех или иных продуктов или технологий, журналисты должны понимать, что на них лежит ответственность за психическое здоровье граждан. Важно и нужно говорить о тех опасностях, которые доказаны, но стоит ли, не будучи специалистом, выдвигать не обоснованное с научной точки зрения предположение о вреде существующих технологий? Ущерб от эффекта ноцебо может быть нанесен самим “информированием”, и это не говоря о том, что дезинформация вредит развитию полезных технологий. Например, из-за нее на рынке могут не появиться помидоры, богатые антоцианами, или картошка со сниженным содержанием канцерогенов. Почему в этом случае не призывают подумать о принципе предосторожности?

Увы, эфирное пространство СМИ и интернета забито всевозможными страшилками, и в следующей главе мы поговорим о том, откуда они берутся. Я думаю, что в целях безопасности слово “ГМО” нужно вовсе убрать из лексикона, а вместо него ввести в употребление другое слово. В рамках ребрендинга ГМО их можно было бы назвать и так: ОМГи – организмы с модернизированными геномами. Или – с несколько иным смыслом – БОНГи, биологические организмы с неизвестными геномами. Но об этом мы поговорим в другой главе. Сам я продолжу использовать в этой книге аббревиатуру “ГМО”, ибо боюсь всех запутать, но за ее пределами настойчиво рекомендую переходить на новую терминологию,
Страница 8 из 23

не имеющую негативной коннотации, успокаивающую, а не будоражащую психику людей.

Глава 3

Сон разума рождает чудовищ. Почему боятся ГМО

В 2000 году в журнале Science вышла статья, показавшая возможность создания генетически модифицированного “золотого риса”, богатого бета-каротином

. В том же году были созданы ГМ томаты с аналогичным качеством

. Бета-каротин – это вещество оранжевого цвета, которое наш организм усваивает и превращает в витамин А.Из-за нехватки этого витамина ежегодно слепнет более 250 тысяч детей в развивающихся странах. Половина ослепших в течение года умирает (прежде всего из-за подверженности инфекциям), а золотой рис мог бы помочь преодолеть эту проблему. Рис первой модификации действительно содержал больше бета-каротина, чем обычный, но недостаточно, чтобы кому-то реально помочь. “Его пришлось бы есть килограммами!” – злорадствовали противники генной инженерии, доказывая бесполезность технологии. В 2005 году была получена новая модификация золотого риса, в которой количество бета-каротина было увеличено еще в 23 раза

. Теперь можно было съедать в сутки всего 75 граммов риса и забыть про нехватку витамина А.

Разумеется, одним лишь золотым рисом не решить всех проблем человечества, связанных с авитаминозом, но он мог бы спасти сотни тысяч жизней. Однако во многих странах эта технология была воспринята населением враждебно. В 2013 году группа из четырех сотен активистов вытоптала поля золотого риса на Филиппинах. Эта история поднимает целый ряд этических вопросов, не считая проблемы уничтожения чужой собственности. Во-первых, вытоптанный рис выращивался не для продажи – это были экспериментальные посевы, урожай с которых через пару недель должен был быть передан контролирующим организациям для проведения экспертизы. Противники ГМО выступали не только против внедрения золотого риса, но даже против его изучения. А как мы продемонстрируем безопасность продукта, если мы не можем его изучать? И вообще, возможно ли переубедить тех, кто, не имея никаких объективных данных, уже пришел к выводу, что выращиваемый сорт риса опасен и ни на что не годится?

Проект по созданию золотого риса имел как коммерческую составляющую, так и благотворительную. Для мелких фермеров в развивающихся странах (с доходом менее 10 тысяч долларов в год) технология должна была отпускаться с бесплатной лицензией, а за фермерами оставалось право хранить и сажать выращенные ими семена. Сражаться с технологией, которую никого насильно не заставляют использовать и, более того, которая предназначена к бесплатному применению, совсем уж странно. Непонятно также, почему в представлении активистов мифическая опасность ГМО превысила реальную опасность нехватки витамина А. Филиппины – одна из тех стран, где отказ от данной технологии неизбежно ведет к гибели людей.

К счастью, не все экспериментальные посевы золотого риса были уничтожены, и научные исследования не оказались отброшены слишком далеко назад. Любопытно, что люди, вытаптывавшие поля, в большинстве своем не были фермерами. Филиппинские фермеры суеверны и считают уничтожение рисовых ростков плохой приметой. Нападавшие были преимущественно городскими жителями, неолуддитами – противниками прогресса. Так их называют по аналогии с участниками стихийных протестов конца XVIII – начала XIX века в Англии. По легенде луддиты получили свое название в честь некоего генерала Лудда, мифического персонажа, прославившегося великой победой – уничтожением двух чулочных станков. Луддиты разрушали машины, станки, оборудование, но у них имелось оправдание, которого нет у большинства неолуддитов: они видели в этих технологиях угрозу собственному благополучию, исходя из относительно рациональных экономических соображений, таких как утрата рабочих мест и средств к существованию.

В России тоже хватает людей, недолюбливающих ГМО. По данным опроса ВЦИОМ, проведенного в 2014 году, три четверти россиян были готовы платить больше за продукты, которые “не содержат ГМО”. Более 80 % населения выступают за то, чтобы запретить ГМО, и считают, что ГМО наносят ущерб здоровью. Откуда берутся эти страхи?

Ниже приведен полный список людей, которые погибли за последние 30 лет в связи с употреблением продуктов, содержащих ГМО.

_____________________________________________________

_____________________________________________________

_____________________________________________________

_____________________________________________________

_____________________________________________________

_____________________________________________________

_____________________________________________________

Впечатляет? А теперь я расскажу про химическое вещество (без цвета и запаха) с созвучным названием, но которое, в отличие от ГМО, не очень активно обсуждается в прессе. Называется оно дигидрогена монооксид, или ДГМО. По данным ВОЗ, только в 2011 году из-за этого вещества погибло около 359 тысяч человек по всему миру. Оно используется для охлаждения ядерных реакторов, в химической промышленности, в производстве сильнодействующих наркотических веществ, пестицидов и ядов. Во время Первой мировой войны ДГМО использовали при создании химического оружия, а сегодня ДГМО можно обнаружить практически в любых пищевых продуктах и напитках.

Основой вещества является радикал гидроксил, способный вызывать мутации в нашей ДНК. ДГМО можно обнаружить в выхлопах некоторых видов транспорта, а отработанный ДГМО тоннами сливается в реки, моря и озера. Существуют огромные корпорации, заинтересованные в продаже ДГМО. Исходя из этой информации, не кажется ли вам, что ДГМО нужно запретить? Или хотя бы ввести обязательную маркировку “содержит ДГМО” на продуктах питания и напитках?

В 1997 году американский школьник по имени Нейтан Зонер сделал доклад об ужасах ДГМО, по содержанию похожий на тот текст, с которым вы ознакомились выше. Потом он спросил у пятидесяти своих сверстников, стоит ли ввести запрет на это химическое соединение. Сорок три человека сказали, что ДГМО нужно запретить, шесть не определились, и только один догадался, что дигидрогена монооксид – это H2О, или просто вода.

Обвести вокруг пальца подобным образом можно не только школьников, но и взрослых людей, в том числе и политиков. Например, на страшилку про ДГМО попалась представительница партии зеленых Новой Зеландии Сью Кедгли, которая, будучи членом парламента, в 2001 году прославилась фразой, что “полностью поддерживает кампанию по запрету этого токсичного соединения”. В 2007 году член парламента Новой Зеландии Джеки Дин направила запрос министру здравоохранения Джиму Андертону, чтобы тот выяснил позицию экспертного комитета по поводу запрета этого химического вещества.

Министр здравоохранения прокомментировал ситуацию так: “Возможно, ей описали дигидрогена монооксид как вещество бесцветное, без запаха, без вкуса, вызывающее смерть тысяч людей каждый год, отказ от которого для тех, кто впал от него в зависимость, означает неизбежную смерть”, – и отметил, что эксперты не имеют намерений предлагать запрет. Страничка в “Википедии”, посвященная Джеки Дин, надолго сохранит назидательные для всех политиков подробности этой истории.

Возможно ли, что с ГМО вышло такое же недоразумение, как и с ДГМО? Может быть, некоторые люди просто не разобрались и не поняли, что это такое? По
Страница 9 из 23

данным социологического опроса, опубликованного на сайте Аналитического центра Юрия Левады, на вопрос “Верно ли, что обычные растения не содержат генов, а генетически модифицированные растения – содержат?” правильный ответ “нет” дали только 29 % опрошенных

. По любопытному совпадению, доля людей, не знающих правильного ответа на поставленный вопрос о генах в помидорах, примерно равна доле людей, считающих ГМО опасными для здоровья и подлежащими запрету. Совпадение? Не думаю.

Похожие результаты были получены в США. Департамент сельскохозяйственной экономики Университета штата Оклахома в январе 2015 года опубликовал данные опроса, согласно которому 82,28 % американцев выступили за обязательную маркировку продуктов, произведенных с использованием генной инженерии. В ходе того же опроса 80,44 % выступили за обязательную маркировку продуктов, содержащих ДНК! Экономист Джейсон Ласк, представивший результаты опросов, пошутил, что, возможно, этикетка для маркировки должна выглядеть так: “Этот продукт содержит дезоксирибонуклеиновую кислоту (ДНК). Глава департамента здравоохранения США установил, что ДНК связана с большим разнообразием заболеваний у животных и людей. Беременные женщины имеют высокий риск передачи ДНК своим детям”.

Если мы вычтем из 82,28 % те 80,44 %, которые хотят маркировать даже продукты, содержащие ДНК, мы получим примерную оценку доли американцев, которые имеют хотя бы минимальное представление о биологии и одновременно являются противниками ГМО. Они составляют лишь 2,23 % от общего числа людей, считающих, что ГМО нужно маркировать. Здесь я делаю лишь то допущение, что не существует таких весьма странных людей (или шутников?), которые хотели бы добиться маркировки продуктов, содержащих ДНК, но – внезапно – ничего не имеют против ГМО. С другой стороны, идея маркировки “содержит ДНК” не так уж плоха в целях просвещения – людям будет полезно узнать, что избежать употребления ДНК в пищу невозможно, ведь она есть в любых живых организмах.

Многие производители ГМО действительно не хотят допускать маркировки продуктов, созданных методами генной инженерии. Иногда это используется как аргумент: “Ага! Они знают, что ГМО вредны! Поэтому пытаются все скрыть!” Но реальность намного проще. Почти любая предупреждающая этикетка с непонятными для потребителя словами “содержит ГМО”, “содержит ДНК” или “содержит ДГМО” приведет к падению продаж независимо от того, насколько опасно то, что мы пытаемся маркировать. Такая реальность связана с тем, что большинство потребителей вообще не понимают, что означает это сочетание букв. ГМО? Губернатор Московской области? Головной мозг одуванчика? Глаз морской ондатры? Государственный музей ортопедии?

В 2014 году я участвовал в передаче “Тем временем” телеканала “Культура” вместе с профессором, доктором биологических наук Михаилом Гельфандом. Одним из наших оппонентов был производитель “натуральных” продуктов питания, создатель фермерского кооператива и, разумеется, противник ГМО. Наш не подозревающий подвоха оппонент попался в расставленную Гельфандом ловушку и заявил, что на его фермерском хозяйстве дигидрогена монооксид не используют. Указав на то, что ДГМО – это вода, мы тщетно пытались узнать у нашего оппонента, как он относится к идее, что продукты питания, которые его организация поставляет на рынок, будут маркироваться честной наклейкой “содержит ДГМО”.

На другой передаче еще один оппонент, представленный “экспертом”, почти три минуты говорил о том, какие страшные последствия ждут всех, кто будет употреблять в пищу “ужасные ГМО”. Перечислив свои опасения, спикер заявил, что именно поэтому он против всяких “консервантов” и “красителей”. Не знал “эксперт”, что консерванты с красителями и генная инженерия – совершенно разные вещи. Любопытно, что разъяснения лишь этого вопроса оказалось достаточно, чтобы убедить в безопасности ГМО таксиста, который вез меня на передачу.

Объяснить человеку, что он стал жертвой надуманной страшилки, можно в двух словах, если речь идет о “страшной” воде или ДНК. В случае с ГМО объяснение будет несколько сложнее, и я попытаюсь изложить его в последующих разделах книги. Психологам известен так называемый эффект бумеранга: когда кто-то в чем-то убежден, попытки переубедить его нередко вызывают противоположный эффект. Человек лишь укрепляется в своей исходной позиции, ознакомившись с доводами другой стороны. Но я думаю, что боязнь генной инженерии – не тот случай. Все указывает на то, что люди, с опаской относящиеся к этой биотехнологии, недостаточно хорошо информированы и склонны совершать натуралистическую ошибку. Начнем с последнего пункта.

Глава 4

Натуралистическая ошибка. Натуральное и искусственное

Думаю, что все видели современные магазины “органических продуктов”, ставшие в последнее время очень популярными и в России, но особенно в США и в Европе. Обычно они характеризуются двумя особенностями: кругленькими суммами на ценниках и широким разнообразием зеленых этикеток на товаре: “натуральный продукт”, “сертифицированный органик”, “не содержит ГМО”, “100 % БИО”, “ЗДОРОВЬЕ”, “экопродукт” и так далее. Журналист Леонид Каганов однажды описал, как боязнь новых технологий должна была выглядеть в прошлом.

Поморская артель “Ломоносовъ”. Только кони! Мы доставляем рыбу в столицу, не используя паровозъ!

В основе многих мифов о еде лежит тезис, что все натуральное, существующее в природе, по определению полезно, а все “искусственное”, созданное человеком, несет потенциальную угрозу здоровью. Эту логическую ошибку апелляции к природе, или так называемую натуралистическую ошибку, достаточно легко продемонстрировать.

В Соединенных Штатах Америки ежегодно возникает более 40 миллионов случаев пищевых отравлений, из-за которых более ста тысяч людей попадают в больницу и более трех тысяч погибают. Думаю, что в России с количеством пищевых отравлений на душу населения дела обстоят не лучше, хотя надежной статистики я не нашел. В подавляющем большинстве случаев отравления связаны с совершенно натуральными болезнетворными микроорганизмами, которые попадают в наш желудочно-кишечный тракт вместе с немытыми овощами, зеленью, сырой рыбой или мясом. Давайте назовем некоторых “друзей”, которых можно подцепить из еды.

Клостридии, вырабатывающие альфа-токсин и ботулотоксин, патогенные штаммы (болезнетворные разновидности) кишечной палочки, сальмонелла, листерия, шигелла, устойчивый ко многим антибиотикам золотистый стафилококк, вирус гепатита А, норовирусы, энтеровирусы, ротавирусы, патогенные амебы, аскариды и другие круглые черви, а также паразитические плоские черви. Это далеко не полный список совершенно натуральных, встречающихся в природе патогенных организмов, “не содержащих ГМО”. Натуральная сальмонелла обнаруживается в натуральных подгнивших продуктах и вызывает натуральный понос, а иногда и натуральную смерть. С другой стороны, “искусственные” консерванты – вещества, угнетающие рост микроорганизмов, предохраняют продукт от плесени и образования токсинов микробного происхождения.

Компания Odwalla, производившая непастеризованные натуральные
Страница 10 из 23

соки, оказалась в центре скандала, когда в 1996 году ее продукцией отравилось 67 человек, один из которых умер. Яблочный сок содержал патогенный штамм кишечной палочки. Но отказ от пастеризации (нагревания жидкости с целью убить микробов) использовался как маркетинговый ход, направленный на любителей “натуральной пищи”.

В 2011 году в Германии случилась вспышка пищевых отравлений, вызванных патогенным штаммом кишечной палочки. Тогда 3950 человек отравились, 53 человека погибли. Расследование показало, что источником инфекции послужила органическая ферма

. Патогенный штамм обнаружили в ростках пажитника, который используется для приготовления многих блюд индийской кухни в качестве приправы. Эпидемиологическое исследование показало, что у тех, кто употреблял этот натуральный продукт, многократно повышался риск кровавого поноса. Мы видим, что органические продукты в данной истории оказались, мягко говоря, небезопасными.

У этого инцидента были достаточно серьезные экономические последствия. Изначально немцы ошибочно подозревали, что источником инфекции являются огурцы, импортированные из Испании, и лишь эти подозрения, впоследствии оказавшиеся ложными, обходились испанским экспортерам, согласно заявлению президента Испанской федерации экспорта фруктов и овощей, в 200 миллионов долларов в неделю. Позже Испания даже отказалась от компенсации в 150 миллионов евро, предложенной Еврокомиссией, заявив, что такая компенсация слишком мала. Отреагировала на эту историю и Россия, которая с июня по июль 2011 года запретила импорт свежих овощей из Европейского Союза.

Анализ ДНК патогенного штамма кишечной палочки показал, что у этой бактерии есть два гена, делающих ее опасной для человека. Благодаря одному гену кишечная палочка вызывает длительный, но не смертельный понос. Другой ген кодирует так называемый токсин Шиги, который вызывает кровавый понос и гемолитико-уремический синдром, характеризующийся болью в животе, рвотой, острой почечной недостаточностью, лихорадкой, а также сонливостью, судорогами и другими признаками повреждений нервной системы. Отравление токсином Шиги смертельно опасно для человека.

Оказывается, что некоторые штаммы кишечной палочки, производящие токсин Шиги, живут в коровах. Коровы, как правило, не чувствительны к токсину, но бактерии, несущие опасные гены, кодирующие токсин, оказываются в навозе. Эти гены могут перенестись в другие виды бактерий, в том числе заражающие людей. Такому переносу генов способствуют вирусы бактерий – бактериофаги. Навоз особенно часто используется на органических фермах в качестве натурального удобрения. Видимо, на органической ферме случилось смешение генов двух бактерий, и получился весьма неприятный для человека патогенный штамм.

Конечно же этот пример не доказывает, что органическая еда, созданная в рамках традиционного сельского хозяйства, опаснее обычной. Такая история могла случиться и на обычной ферме. Я лишь подчеркиваю, что “натуральное” не является синонимом “полезного” или “безопасного”. Мы обращаем так много внимания на всякие странные вещи: содержит ли продукт ГМО, красители и консерванты, натурален ли он, – но при этом забываем о самом главном. Можем ли мы отравиться? От ГМО не умер никто, а от пищевых инфекций умирают тысячи людей в развитых странах. Причем предотвратить заражение в большинстве случаев можно, соблюдая банальные правила гигиены и санитарии, правильно готовя пищу, тщательно промывая фрукты и овощи. Увы, СМИ не спешат пропагандировать полезные идеи, предпочитая просветительским наставлениям надуманные ужастики о “вреде ГМО”.

Производители “органических продуктов” хвастаются тем, что при выращивании продуктов питания предпочтение отдается традиционным удобрениям, которые противопоставляются вредным “химическим” удобрениям. Забавно, что маркировать свои продукты этикеткой “получено с использованием навоза” такие производители не спешат. Навоз, в отличие от химических удобрений, по определению богат различными микроорганизмами, а значит, растения, выращенные методами органического земледелия, могут тоже отличаться разнообразием микроорганизмов.

В 2010 году в журнале Food Microbiology был опубликован сравнительный анализ микробного состава на поверхности салата, который произрастает на обычных и органических фермах в Испании

. Оказалось, что по разнообразию и количеству микроорганизмов салат с органических ферм отличается от салата с обычных ферм: в среднем в нем больше энтеробактерий (группа, в которую попадают кишечная палочка, сальмонелла, шигелла и даже чумная палочка Yersinia pestis), псевдомонад и некоторых других бактерий. В еще одной работе, опубликованной в Canadian Journal of Microbiology, было показано повышенное разнообразие микробов в листьях базилика, выращенного органическими методами

. Авторы обращают внимание на то, что листья базилика часто употребляются сырыми, без мытья и готовки, чтобы не помять хрупкое растение, а значит, могут нести риск пищевых отравлений.

Согласитесь, из этого могла бы получиться отличная страшилка. Представьте заголовок в какой-нибудь популярной желтой газете: “Ученые обнаружили в органических продуктах родственницу чумной палочки!” В статье можно привести правдивые и одновременно наводящие панику и вводящие в заблуждение утверждения: “Как высокое разнообразие микробов в органических продуктах питания скажется на здоровье потребителя, до конца не изучено, и это нужно проверить на нескольких поколениях!” Но попробуем сохранить объективность.

Во-первых, если растения мыть, разницы в составе микрофлоры вы, скорее всего, уже не обнаружите. В упомянутых исследованиях специально сравнивали немытые растения. Во-вторых, кто сказал, что повышенное разнообразие микробов – это обязательно плохо? Есть продукты, качество которых улучшается определенными микроорганизмами: например, качество вина зависит от используемых одноклеточных грибов – дрожжей, перерабатывающих сахар в алкоголь, а кефир получают из молока при помощи молочнокислых и уксуснокислых бактерий и все тех же дрожжей. Значит, с каждым продуктом нужно разбираться отдельно. Что касается энтеробактерий, среди них хватает вполне безобидных представителей, а саму чумную палочку никто конечно же на исследованных фермах не находил. Стоит ли употреблять органические продукты – личное дело каждого, но если вы думаете, что они полезнее исключительно в силу своей натуральности и потому за них стоит платить вдвое, а то и втрое больше, то, увы, вас ввели в заблуждение.

Иллюстрации натуралистической ошибки не ограничиваются опасностью натуральных пищевых патогенов. Натуральная бледная поганка содержит более десятка различных натуральных ядовитых соединений, среди которых наиболее опасным считается альфа-аманитин, приводящий к массовой гибели клеток

. Смерть при отравлении бледной поганкой часто бывает долгой и мучительной. При этом постепенно отключаются почки, печень, легкие. Тем немногим, кому все-таки удается выжить после употребления данного гриба, обычно приходится делать пересадку жизненно важных органов.

Натуральная рыба фугу ядовита, если не приготовить ее особенным
Страница 11 из 23

способом. При готовке из нее вынимают все внутренности, а мясо тщательно промывают, но не стоит пробовать сделать это дома: одной маленькой рыбы фугу, которая умещается на ладони, достаточно, чтобы отравить несколько человек. Японские повара, желающие готовить эту рыбу, должны пройти экзамен, в том числе съесть собственноручно приготовленное блюдо из фугу, а в древности повар, по ошибке отравивший клиента, должен был совершить ритуальное самоубийство.

Кожа золотой ядовитой лягушки покрыта натуральным нейротоксином (ядом, поражающим нервную систему), который называется батрахотоксин. Смертельная доза этого яда составляет лишь около 1–2 микрограммов на килограмм массы тела. Этот токсин предотвращает передачу импульсов по нервным волокнам, парализуя мускулатуру организма. Кроме того, он нарушает работу сердца, в конечном итоге приводя к его остановке.

Самая ядовитая змея – жестокая змея (пустынный тайпан). Взрослая особь имеет достаточно яда, чтобы убить сотню человек или 250 тысяч мышей. Яд этой змеи примерно в 180 раз сильнее яда кобры и содержит сразу несколько разных нейротоксинов, а также гемотоксины, разрушающие клетки крови, миотоксины, нарушающие работу мышц, и массу других ядов. Змеиный яд, конечно, тоже натурален.

После похода на природу, куда-нибудь в лес, особенно в Сибири, проверьте, не прицепился ли к вам клещ. Эти кровососущие существа могут поджидать вас, сидя на высокой травинке. Некоторые из них распространяют вирус клещевого энцефалита, некоторые – бактерии рода Borrelia, возбудителей боррелиоза (болезни Лайма). Все это – совершенно натуральные заболевания, поражающие центральную нервную систему.

Механизмы защиты от врагов отличаются у растений и животных. Если животные могут попробовать убежать или защититься с помощью рогов или клыков, то растения такой возможности не имеют. Поэтому они специализируются на других приспособлениях – на колючках, а также химическом и биологическом оружии. Самая обычная картошка или соя может содержать вещества, нарушающие работу (ингибиторы) трипсина – важного пищеварительного фермента. Трипсин производится поджелудочной железой и попадает в кишечник, где он расщепляет белки, поэтому его ингибиторы нарушают переваривание пищи

.

Долгое время среди органических фермеров пользовался популярностью ротенон – сложное органическое соединение, которое можно получать из корней некоторых растений семейства бобовых. Ротенон – натуральный пестицид, чрезвычайно ядовитый для насекомых и рыб. Оказалось, что ротенон индуцирует болезнь Паркинсона у млекопитающих, разрушая нервные клетки

. Кроме того, это вещество токсично для клеток крови человека

, причем бывали случаи, когда в продуктах содержание ротенона превышало предельно допустимые значения

. Сейчас многие страны начали отказываться от этого натурального пестицида.

В действительности по весу более 99 % пестицидов, употребляемых нами в пищу, имеют абсолютно натуральное происхождение – производятся растениями для защиты от вредителей в естественной среде обитания

. Некоторые из этих пестицидов безопасны в небольших количествах (и даже используются в кулинарии), другие – сильно ядовиты. Алкалоид капсаицин, придающий перцу остроту, – эффективный инсектицид. В листьях, плодах, стеблях и клубнях картофеля и других пасленовых часто содержится соланин и другие токсичные алкалоиды

.

Соланин вызывает разрушение эритроцитов, тошноту, головную боль, понос, повышение температуры, а в тяжелых случаях судороги, делирий (помраченное сознание) и кому. К счастью, человечество освоило искусственные методы, позволяющие сделать картофель безопасным, – термическую обработку. Любопытно, что содержание соланина в картофеле зависит от условий выращивания и хранения, причем последние факторы нередко играют большую роль, чем гены растения. Например, если клубни картофеля оставить на солнечном свете, они зеленеют и в них накапливается больше соланина, то есть один и тот же сорт картофеля может оказывать разное воздействие на организм.

В 1968 году методами классической селекции была выведена картошка “Ленапе” (Lenape)

, но спустя пару лет после успешного выхода этого сорта на рынок оказалось, что в нем сильно повышено содержание соланина

, поэтому его коммерческое выращивание прекратили. В конце XX века история повторилась со шведским сортом “Магнум Бонум” (Magnum Bonum)

. При создании гибридов двух разных сортов картофеля непредсказуемым образом может меняться не только количество алкалоидов, но и их состав. Могут появляться и совсем новые алкалоиды

. Это лишь несколько примеров возможных негативных последствий обычной селекции, в результате которой получаются продукты, считающиеся “натуральными” и (ошибочно) безопасными.

Некоторые полагают, что природа “мудра” и не терпит вмешательства, однако именно эта “мудрость” породила описанные выше угрозы для человеческой жизни и нежелательные изменения растительных геномов. У природы нет никакого “плана”, который мы могли бы нарушить. Порой (и временами заслуженно) она хочет нас убить, а мы защищаемся как умеем – с помощью интеллекта, технологий и изобретений. Жители глухих африканских деревень на своем горьком опыте знают, насколько “хорошо” людям живется в условиях, приближенных к естественной среде обитания человека: рядом с натуральным малярийным комаром, вирусом Эбола и ВИЧ. Интеллект – наша главная адаптация к меняющимся и нередко враждебным условиям окружающей среды. Интеллект позволяет нам производить средства защиты от вредных микроорганизмов: так, искусственная вакцина от оспы спасала нас от оспы натуральной. Интеллект позволяет нам производить растения более высокого качества. Благодаря достижениям научно-технического прогресса, которые многие так пренебрежительно характеризуют термином “искусственное”, продолжительность жизни человека выросла в развитых странах с тридцати до семидесяти – восьмидесяти лет.

Сам термин “натуральность” мы используем неправильно. Человек и его творения как бы противопоставляются природе, хотя человек тоже является ее частью, продуктом биологической эволюции. Почему продукты, произведенные человеком, не натуральны, а продукты, произведенные пчелами и более нигде в природе не встречающиеся, например мед, – натуральны? Почему, когда люди занимаются генной инженерией – это плохо, но когда ею занимаются бактерии, живущие в почве и переносящие свои гены в растения, или вирусы, встраивающие свои генетические последовательности в геномы всевозможных живых организмов, – это считается естественным и безопасным?

Современных “натуральных” продуктов не существовало бы, если бы человек не вмешивался в эволюционные процессы и не направлял их. Кукуруза, капуста, арбуз, дыня – все это результаты селекции, искусственного отбора, который на протяжении многих поколений менял растения и их наследственную информацию, чтобы те могли стать растениями культурными. На самом деле генетически модифицированные организмы – такие же натуральные, как селекционные сорта растений. Это не повод считать их абсолютно безопасными, ведь и натуральное может представлять угрозу
Страница 12 из 23

для здоровья, но это повод относиться к ним так же, как к обычным организмам, без двойных стандартов. Почему ГМО натуральны, станет понятно по мере ознакомления с основами работы генетического аппарата клеток в последующих главах книги.

Глава 5

Грамматика жизни. ДНК, гены, геномы

В основе передачи наследственной информации у любых живых организмов, будь то люди, животные, растения, грибы или бактерии, лежит двухцепочечная молекула ДНК

. Каждая из двух цепей – полимер, состоящий из четырех типов мономеров, нуклеотидов аденина (A), тимина (T), цитозина (C) и гуанина (G). Например, вот короткая последовательность одной цепочки ДНК из семи нуклеотидов: GATTACA (это также название известного фантастического фильма). Напротив нуклеотида А одной цепи во второй цепи молекулы ДНК всегда стоит Т, а напротив G – всегда C. Это свойство называется комплементарностью и помогает молекуле ДНК размножаться в ходе процесса, который называется репликация.

Во время репликации двойная спираль расплетается на две одинарные цепи, и к каждой из них достраивается зеркальная, комплементарная копия, нуклеотид за нуклеотидом (А напротив Т, G напротив C и так далее). В результате мы получаем две одинаковые двухцепочечные молекулы, которые при клеточном делении разойдутся к разным полюсам клетки и достанутся двум ее потомкам. Процесс построения осуществляет фермент ДНК-полимераза, названный так потому, что он берет одиночные нуклеотиды (мономеры) и создает из них нить (полимер).

Структура молекулы ДНК была открыта в 1953 году молекулярными биологами Фрэнсисом Криком и Джеймсом Уотсоном. В начале того же года американский химик и впоследствии лауреат двух Нобелевских премий Лайнус Полинг предложил неправильную структуру молекулы ДНК с тремя спиралями

, то есть до Уотсона и Крика структура молекулы ДНК не была очевидной даже для выдающихся ученых. Тем интереснее, что советский ученый Николай Кольцов из самых общих соображений предположил, что наследственная информация должна храниться в виде огромной молекулы, сделанной из двух зеркальных цепей, еще в 1927 году!

Совокупность молекул ДНК какого-нибудь организма называется геномом. У бактерий и архей, образующих группу прокариот – организмов, клетки которых не содержат ядра, – геном обычно представлен одной двухцепочечной молекулой ДНК, замкнутой в кольцо. Иногда у прокариот есть еще несколько дополнительных кольцевых молекул ДНК меньшего размера – плазмид. У эукариот, организмов с клеточными ядрами, к которым принадлежат растения, грибы и животные, а также некоторые одноклеточные простейшие, геном обычно больше, чем у бактерий, и представлен несколькими линейными молекулами ДНК – хромосомами.

В качестве примера рассмотрим геном человека. В его состав входят 22 неполовые хромосомы и половые хромосомы Х и Y. В большинстве наших клеток неполовые хромосомы присутствуют в двух копиях – одна достается нам от мамы, а другая от папы, то есть всего хромосом 46. У мужчин присутствует по одной копии половых хромосом – Х и Y, а у женщин две Х-хромосомы. У человека изменение количества хромосом, как правило, либо несовместимо с жизнью (в большинстве случаев), либо приводит к отклонениям вроде синдрома Дауна (когда у человека три 21-х хромосомы). Чего бы там ни говорил один отечественный министр культуры, у народа России (к счастью) лишней хромосомы нет.

Кроме того, отдельный геном имеется у митохондрий – особых структур внутри наших клеток, у которых есть собственная оболочка (мембрана). Митохондрии как будто маленькие отдельные организмы, которые способны размножаться внутри клеток и имеют ряд важных функций, например производство молекул, используемых в качестве источника энергии во многих клеточных процессах.

Одинарный набор хромосом человека насчитывает примерно три миллиарда нуклеотидов, “букв” – это размер его генома. Двойной набор хромосом – это примерно шесть миллиардов нуклеотидов. Если их сшить вместе и вытянуть в нить, получится молекула длиной примерно два метра, которая тем не менее столь тонка и так плотно упакована, что помещается в клеточном ядре, размер которого всего несколько микрометров (один микрометр – это одна миллионная метра).

Наиболее изученный тип функциональных последовательностей ДНК – гены, кодирующие белки. С таких генов считывается молекула матричной РНК (мРНК) в ходе процесса, который называется транскрипция, что переводится как “переписывание”. РНК, как и ДНК, состоит из четырех типов мономеров, но вместо нуклеотидов тимина (T) в состав РНК входят нуклеотиды урацила (U). Молекула мРНК – одноцепочечная, комплементарная той цепи молекулы ДНК, с которой она “переписана”. Она играет роль инструкции для синтеза какого-нибудь белка (протеина). Белки, в свою очередь, могут выполнять очень разные функции: “сшивать” клетки вместе, чтобы те образовывали ткани, осуществлять всевозможные химические превращения, регулировать работу генов и так далее.

Представьте, что у вас есть кулинарная книга (геном), которая содержит множество рецептов (генов). Вы можете сделать ксерокопии отдельных рецептов и разослать их поварам. Книга у вас одна, а копий рецептов и поваров много. Такие рецепты в данной аналогии – РНК. Ну а белки – продукт деятельности поваров: различные блюда. В клетках роль поваров выполняют структуры, называющиеся рибосомами, – молекулярные фабрики для синтеза белков. Процесс синтеза белков называется трансляцией (“переводом”).

Белки, как и молекулы ДНК и РНК, являются полимерами, только белки состоят не из нуклеотидов, а из аминокислот. Последовательность аминокислот белка определяется последовательностью кодонов – троек нуклеотидов молекулы РНК, а правило соответствия кодонов аминокислотам называется генетическим кодом. Например, у большинства живых организмов кодон GCC кодирует аминокислоту аланин, а кодон AUG – метионин. Последовательность нуклеотидов AUGGCCGCC кодирует последовательность из трех аминокислот: метионин, за которым следуют два аланина.

Три нуклеотида в кодоне и четыре разные буквы генетического алфавита позволяют создать 4

, или 64, разных кодона, то есть с их помощью можно закодировать 64 аминокислоты. Но в стандартном генетическом коде присутствует всего 20 аминокислот, то есть одна и та же аминокислота кодируется сразу несколькими различными кодонами. Это свойство генетического кода называется вырожденностью. Стоп-кодонов, командующих рибосоме остановить синтез белка, в стандартном генетическом коде тоже несколько, а точнее три: UGA, UAG, UAA. Слева приведена схема стандартного генетического кода. В круге первом расположены 4 возможные первые буквы кодона (A, C, U, G). Напротив каждой большой буквы расположены 4 буквы поменьше – вторые буквы кодона. В следующем круге расположены третьи буквы кодона. В четвертом круге напротив группы кодонов показана аминокислота, которую они кодируют.

Иногда в СМИ можно услышать не совсем корректное выражение “генетический код мутировал”. На самом деле мутации происходят не в генетическом коде, а в молекулах ДНК, в геноме, в результате чего меняются нуклеотидные последовательности. Мутации можно сравнить с заменой буквы в отдельном слове.
Страница 13 из 23

Например, фраза “Маша ехала на мотоцикле” превращается во фразу “Саша ехала на мотоцикле”, если одна буква М “мутировала” в букву С. Изменение генетического кода намного серьезнее – это как изменение алфавита. Представим, что во всем тексте буквы М внезапно превратились в буквы К. Теперь у нас “Каша ехала на котоцикле”. Понятно, что такие изменения приводят к значительным последствиям и делают практически любой достаточно длинный текст бессмысленным. Поэтому изменения генетического кода происходят крайне редко. Но происходят!

Небольшое отклонение от стандартного генетического кода есть у некоторых инфузорий. Один или даже два стоп-кодона стандартного генетического кода могут кодировать у этих одноклеточных организмов аминокислоту глутамин

. В случае некоторых организмов можно сделать небольшое искусственное изменение генетического кода. Например, ученым удалось взять кишечную палочку и сделать так, чтобы один из ее трех стоп-кодонов начал кодировать аминокислоту

. Ну а в природе еще одним любопытным исключением является генетический код митохондрий, отличающийся от стандартного кода сразу несколькими кодонами. Если не учитывать митохондрии, у большинства организмов генетический код один и тот же: у человека он такой же, как у червяка, утконоса или огурца, или даже у кишечной палочки. А вот геномы у этих организмов различаются очень сильно. Тот же алфавит, но другой текст.

Но что стоит за генетическим кодом? Почему напротив того или иного кодона ставится определенная аминокислота? Аминокислоты доставляются в рибосому молекулами, которые называются транспортными РНК. К одной части транспортной РНК прикреплена аминокислота, а другая ее часть содержит нуклеотиды, комплементарные кодону, который кодирует аминокислоту. Кодоны различаются, поэтому и транспортные РНК бывают разными.

Теоретически мы могли бы поменять одновременно и генетический код, и кодоны в генах, кодирующих белки, причем сделать это таким образом, чтобы все белки остались прежними. Насколько мы можем судить, это не имело бы значительных последствий для организма: генетический код не обязан быть таким, какой он есть. Совершенно разные организмы имеют одинаковый генетический код потому, что все живое произошло от общего предка, у которого генетический код был таким же, как у нас с вами.

Только представьте: в течение нескольких миллиардов лет на нашей планете одноклеточные организмы эволюционировали в многоклеточные формы жизни, которые смогли выйти на сушу, появился и вымер тираннозавр, а вместе с ним масса других гигантских рептилий, возникли приматы, в том числе и предки современного человека. С тех пор успела возникнуть и развалиться Римская империя, мы прошли через темные века Средневековья в эпоху Просвещения, создали двигатель внутреннего сгорания, самолеты, освоили ядерную энергетику, изобрели компьютеры и даже отправили человека на Луну. Все это время происходили колоссальные изменения в геномах живых организмов, но генетический код всех этих организмов оставался неизменным, постоянным, неразрушимым.

Незыблемость генетического кода очень удобна для генных инженеров. Допустим, мы хотим, чтобы бактерия синтезировала какой-нибудь растительный белок. Берем соответствующий ген из растения, переносим в кольцевую молекулу ДНК – плазмиду, а ее внедряем в клетку бактерии. В большинстве случаев бактерия будет производить белок идентичный тому, что производится в растении. Если бы генетический код у растений и бактерий отличался, мы бы получили какой-то другой белок, с другим набором аминокислот и другими свойствами или вовсе полную ерунду. В таких условиях генная инженерия была бы гораздо более трудным занятием.

Когда был прочитан геном маленького круглого червя Caenorhabditis elegans, то есть когда была установлена последовательность нуклеотидов его молекул ДНК, оказалось, что у него около 20 тысяч генов

. Геном человека тогда еще не был прочитан, и количество генов в нем оставалось под вопросом. Ученые даже устраивали тотализаторы, в ходе которых пытались угадать, сколько генов будет обнаружено. Назывались цифры вплоть до сотен тысяч, но верхней границей было значение 3 миллиона – примерно столько генов позволял хранить в себе размер нашего генома в три миллиарда нуклеотидов (при среднем размере гена около тысячи нуклеотидов).

Идея тотализатора по поводу числа человеческих генов пришла в голову доктору Эвану Бирни в баре при лаборатории в Колд-Спринг-Харбор незадолго до завершения проекта “Геном человека”. Победу присудили трем ученым. Пол Дир из Британского совета по медицинским исследованиям поставил на дату своего рождения (27.04.1962–27462), Ли Роуэн из Института системной биологии в Сиэтле поставила на 25947, а Оливер Джейлон из французской компании Genoscope поставил на 26500. Когда доктора Дира спросили, как ему удалось предсказать число генов человека, он ответил: “Дело было в баре, глубокой ночью. Наблюдая за поведением пьющих людей, я подумал, что оно мало отличается от поведения мух-дрозофил, у которых 13500 генов, а потому мне показалось, что удвоенного числа мушиных генов людям вполне достаточно”.

Позже оказалось, что некоторые предполагаемые гены человека на самом деле не работают (являются псевдогенами), и сейчас считается, что у человека 20–25 тысяч функциональных генов

. Довольно обидный факт для “венца творения”. Особенно если учесть, что полно организмов как с большим по размеру геномом, так и с большим числом генов. В первом случае примером послужит двоякодышащая рыба Protopterus aethiopicus, чей геном в 40 раз больше человеческого

, а во втором – рис Oryza sativa, у которого более 30 тысяч генов

. Возможно, венцом творения правильнее называть Trichomonas vaginalis — одноклеточного возбудителя трихомониаза, распространенного заболевания, передающегося половым путем. По современным оценкам, Trichomonas vaginalis имеет около 60 тысяч генов

.

Некоторые биологи составили достаточно правильное и обоснованное представление о количестве генов у человека задолго до того, как был прочитан его геном. Еще в 1972 году эволюционный биолог Сусуму Оно писал в своей статье “Столько мусорной ДНК в нашем геноме”

, что у нас должно быть около 30 тысяч генов. Эту феноменально близкую к правде цифру Оно получил сорок лет назад из соображений о том, как часто происходят вредные мутации – изменения ДНК, негативно сказывающиеся на потомстве у людей, мышей и других организмов. Если бы у нас было 3 миллиона важных генов, то многие из них неизбежно портились бы в каждом поколении. А вот 30 тысяч, согласно расчетам Оно, мы могли бы содержать в нашем геноме без серьезных рисков. Но из этого следовало, что большая часть генома человека не несет жизненно важных функций или попросту является “мусором”. Мутации в таких участках безвредны. В пользу принципиального существования мусора в ДНК можно добавить такой не совсем корректный, но интуитивно понятный аргумент: если бы каждый нуклеотид в любом геноме был функционален, то зачем луку геном в пять раз больший, чем наш с вами?

С появлением новых данных – полных геномов человека и других животных – ситуация прояснилась. Если взять геномы человека, шимпанзе, мыши, утконоса и так далее,
Страница 14 из 23

окажется, что какие-то участки последовательностей нуклеотидов даже у сравнительно далеких видов очень похожи – например, гены, необходимые для синтеза белков, входящих в состав рибосом. Это понятно: рибосомы возникли очень давно, у них были миллиарды лет, чтобы в процессе эволюции достигнуть такого совершенства, что их практически невозможно улучшить или изменить, не испортив один из важнейших клеточных процессов – синтез белков, за который они отвечают.

Мутации происходят в любых участках генома, поэтому хорошим критерием функциональности участка ДНК является то, что возникающие в нем мутации не закрепляются: носители новых генетических вариантов вымирают, не оставляя потомства, устраняются естественным отбором. Другие участки геномов имеют значительные расхождения между видами и даже внутри видов. Значит, мутации в этих участках, скорее всего, безвредны, то есть их функциональная роль как минимум невелика или не зависит от конкретной последовательности нуклеотидов. Например, если последовательность нужна только для физического разделения в пространстве двух участков ДНК. Это знание используется в современной медицинской генетике, когда ученые пытаются понять, какие изменения в ДНК человека приводят к тому или иному наследственному заболеванию

: наиболее подозрительными являются мутации в эволюционно неизменных участках ДНК.

В ряде современных работ оценили долю участков ДНК человека, мутации в которых вредны, и оказалось, что они составляют лишь около 6,5–10 % генома человека

, что снова совпало с предсказаниями Оно! В далеком 1972 году он из теоретических соображений называл цифру в 6 %! У нас большой геном, но, по-видимому, в нем действительно довольно много лишнего. Важен не только размер генома, но и умение им пользоваться.

Еще один актуальный вопрос: насколько последовательности ДНК различаются между живыми организмами? Насколько похожи гены человека и шимпанзе? Гены человека и банана? Степень сходства (доля совпадающих нуклеотидов) будет варьировать в зависимости от выбранного участка ДНК. Ниже показаны сравнения (нуклеотидные выравнивания) генов, кодирующих белок гистон H1 человека и шимпанзе, а также человека и банана (звездочками помечены совпадающие нуклеотиды; знаками “-” – отсутствующие). Гистоны – это белки, на которые “наматывается” ДНК, чтобы компактно упаковаться в ядре. Это очень древние белки, возникшие на заре эволюции, необходимые для жизни всем эукариотам. Поэтому степень сходства между организмами по генам этого белка выше среднего – мутации в этих генах чаще всего вредны.

Можно заметить, что ген человека и ген шимпанзе почти идентичны: всего 5 отличий на 660 нуклеотидов! В среднем у человека с шимпанзе последовательности ДНК совпадают на 98,76 %

(чуть ниже, чем получилось для приведенного сравнения), а вот геномы двух людей совпадают примерно на 99,9 %. Мы также видим, что ген гистона банана совпадает с геном человека лишь где-то на 50 %. Для сравнения, если мы возьмем две совершенно случайные последовательности ДНК, между ними будет около 25 % сходства. Шимпанзе ближе к человеку, чем к банану, не только по степени сходства генов, но и по набору генов в геноме. У банана будет много генов, которых нет у приматов (например, связанных с фотосинтезом), а у приматов будут гены, которых нет у растений (например, связанные с развитием нервной системы).

Полезно представлять, насколько маленьким может быть геном живого организма. Геном паразитической бактерии Mycoplasma genitalium составляет всего около 580 тысяч “букв” – это один из самых маленьких известных бактериальных геномов

. Еще меньше бывают геномы вирусов. Вирусы не принято называть “живыми”, ведь они не являются клетками и не могут самостоятельно размножаться. Вирусы – это паразитическая наследственная информация, использующая генетический аппарат клеток для синтеза своих белков, размножения и распространения.

Типичный геном вируса иммунодефицита человека (ВИЧ) составляет 9749 нуклеотидов

. Бывают и на удивление крупные вирусы с очень богатым генетическим материалом, например, геномы пандоравирусов могут достигать размера в 2,5 миллиона нуклеотидов

, а живут они в амебах – одноклеточных эукариотах. Также в амебах живет и другая группа крупных вирусов с милым названием мимивирусы, геномы которых достигают миллиона нуклеотидов, что для вирусов тоже очень много

.

ВИЧ – это ретровирус, но не подумайте, что это вирус шестидесятых (впервые вызываемый им синдром приобретенного иммунодефицита – СПИД – был диагностирован в 1981 году). Он называется ретровирусом потому, что его геном сделан не из ДНК, как у большинства вирусов и живых организмов, а из РНК. У ретровирусов есть белок “обратная транскриптаза”, который умеет делать транскрипцию наоборот, то есть синтезирует ДНК, комплементарную молекуле РНК. С помощью этого белка ВИЧ создает ДНК-версию своего генома и встраивает ее в геном человеческой клетки. Дальше инфицированная клетка начинает сама производить вирусный генетический материал и его белки. Синтезированные компоненты собираются в новые вирусные частицы и выходят из клетки.

Генетические последовательности можно записывать в виде текста и работать с ними как с последовательностью букв. Так их удобно анализировать: исследовать распространенность тех или иных мутаций в популяции, изучать закономерности эволюции, находить определенные гены и так далее. Ниже приведена последовательность гена, который кодирует обратную транскриптазу ВИЧ.

А вот аминокислотная последовательность обратной транскриптазы ВИЧ в стандартном однобуквенном коде.

Обратите внимание, что теперь мы должны использовать не 4 символа, а 20 – для обозначения аминокислот, а не нуклеотидов, и количество символов уменьшилось в три раза, ведь тройке нуклеотидов отвечает одна аминокислота. Мы досконально знаем, как устроен геном ВИЧ с точностью до нуклеотидов, а точнее, мы знаем последовательности геномов сотен разных его штаммов, причем все они выложены в свободный доступ. И вот странный факт: есть целое движение людей, отрицающих существование этого вируса!

Существуют методы, позволяющие установить последовательность нуклеотидов той или иной молекулы ДНК или РНК. В случае с молекулами РНК обычно сначала осуществляют обратную транскрипцию (с помощью обратной транскриптазы), чтобы получить молекулу ДНК, а уже саму молекулу ДНК “читают”. Чтение генетических последовательностей позволяет нам находить мутации или нуклеотидные замены – отличия между этими последовательностями. В случае с вирусами или бактериями это часто имеет прикладное значение и помогает установить, какие изменения генов привели к тому, что бактерия обрела устойчивость к антибиотику, а вирус – способность обходить защиту нашей иммунной системы или способность заражать представителей другого вида, который раньше вирусом не заражался.

Полезно знать, почему вирусы птичьего и свиного гриппа внезапно стали заражать человека, а также почему безобидная кишечная палочка с органической фермы в Германии встала на тропу инфекционной войны и сделалась патогенной. Если мы хотим подобрать лекарство, которое
Страница 15 из 23

будет действовать против многих штаммов вируса или бактерии, желательно, чтобы оно взаимодействовало с какой-нибудь неизменной частью важного для них белка. Есть и другие вопросы, ответы на которые получают с использованием анализа ДНК (подробный рассказ о нем последует в двенадцатой главе).

Еще один пример использования анализа ДНК можно продемонстрировать на все том же вирусе иммунодефицита человека. В 1992 году в журнале Science была опубликована статья, описывающая драматичную историю, которая развернулась в США

. Семерым пациентам врача-стоматолога, больного СПИДом, поставили диагноз ВИЧ-инфекции. Причем пятеро из семи пациентов не имели очевидных факторов риска заражения: не занимались незащищенным сексом, не принимали внутривенно наркотики.

Учитывая, что через кабинет врача проходит довольно много людей, могло иметь место простое совпадение. Провели анализ генов, кодирующих вирусную оболочку ВИЧ из образцов пациентов, дантиста и группы людей из того же региона, зараженных ВИЧ, но не ходивших к данному стоматологу. Оказалось, что гены ВИЧ пяти из упомянутых пациентов очень похожи на гены ВИЧ врача, причем сходства было намного больше, чем с генами ВИЧ других людей.

Гены ВИЧ двух оставшихся пациентов сильно отличались от генов ВИЧ стоматолога, поэтому было заключено, что пять пациентов заразились в кабинете врача, а двое, скорее всего, где-то еще. ВИЧ мутирует так быстро, что, глядя на последовательности его генов у разных людей, заразившихся даже с небольшим интервалом времени, мы можем достоверно восстановить историю заражений. Примерно такой же сравнительный генетический подход используется для установления отцовства и иных родственных связей между людьми или для установления родства между живыми организмами разных групп. В последнем случае на основании степени сходства генетических последовательностей организмов строятся филогенетические деревья (что-то вроде родословной). Такие деревья показывают, что ближайший современный родственник человека – шимпанзе, что летучие мыши и дельфины генетически ближе к хомячкам и коровам, чем к птицам и рыбам.

Наверное, во избежание паники и распространения кариеса стоит подчеркнуть, что риск заражения ВИЧ в кабинете стоматолога ничтожно мал и связан с нарушением правил гигиены и несоблюдением стерильности медицинского оборудования.

Вот еще одна история о необычном применении методов генетического анализа. Вши, живущие в волосах человека, имеют существенные отличия от вшей, живущих на его одежде, – как в поведении, так и в устройстве тела. Отличаются они и генетически. Понятно, что до появления вшей, приспособленных к жизни в человеческой одежде, должна была появиться сама эта одежда, то есть, изучая генетические отличия человеческих вшей, можно примерно оценить, как давно люди стали одеваться. Для этого нужно лишь знать, сколько мутаций накопилось с момента расхождения двух популяций вшей, сколько новых мутаций возникает в геноме вшей за одно поколение и как быстро происходит смена поколений. Учитывая эти данные, эволюционный биолог Мелисса Тоупс с коллегами пришли к выводу, что одежду наши предки начали носить около ста тысяч лет назад

.

Сегодня мы знаем, что мутации в генах приводят к генетическому разнообразию. У людей на геном в три миллиарда нуклеотидов приходится около трех миллионов отличий между парами хромосом, доставшимися от папы и мамы, – разных аллелей

. Существование аллелей генов было предсказано задолго до открытия молекулы ДНК. Еще в середине XIX века чешский монах Грегор Мендель установил не только существование генов как дискретных единиц передачи наследственной информации, но и законы наследования этих генов, а также тот факт, что один и тот же ген может присутствовать в нескольких вариантах. Мендель пришел к этому выводу, изучив закономерности наследования признаков у гороха.

Горох бывает с красными цветками, а бывает с белыми. Горох способен самоопыляться. Если горох самоопыляется в течение нескольких поколений, можно вывести “чистые линии” гороха по признаку “окраска цветков”. Что такое чистая линия гороха? Это, например, такой горох с красными цветками, который при самоопылении всегда дает горох с красными цветками, то есть при скрещиваниях в рамках чистой линии признак сохраняется из поколения в поколение. Мендель обнаружил, что если скрестить чистые линии гороха с красными цветками и гороха с белыми цветками, то в первом гибридном поколении все потомки будут с красными цветками. Признак “красные цветки” Мендель назвал доминантным. Признак “белые цветки” был назван рецессивным.

Мендель выяснил, что если скрещивать особи гороха из первого гибридного поколения (все с красными цветами) друг с другом, то примерно ? их потомков унаследуют красные цветки, но ? унаследует белые. Это согласовывалось с наблюдением, что у внуков могут проявляться какие-то признаки их дедушек и бабушек, которые не проявлялись у родителей. В данном случае унаследованный признак белых цветков незаметно сохранялся в растениях гороха с красными цветками. Мендель исследовал более 29 тысяч особей гороха, и такая большая выборка позволила ему показать, что данное соотношение 3:1 доминантных признаков к рецессивным у “внуков” близко к математически точному. Это навело его на мысль, что в основе наследования генетической информации лежат некие дискретные невидимые невооруженным глазом сущности. Впоследствии эти сущности были изучены и названы генами.

Если бы Мендель изучал генетику людей и экспериментировал с чистыми линиями нашего вида (если бы это было возможно), он мог бы обнаружить много похожих эффектов, связанных с тем, что один вариант гена доминирует над другим. У людей зеленый цвет глаз, как правило, доминирует над голубым, а шестипалость над пятипалостью (просто мутация очень редкая). На самом деле это немного упрощенное представление, так как даже самые простые признаки редко определяются лишь одним геном. Но Менделю повезло – он выбрал очень удачную модель, максимально приближенную к идее “один ген – один признак”.

Открытие молекулы ДНК и ее роли в передаче наследственной информации заслуживает отдельного упоминания. Молекула ДНК была открыта в 1869 году швейцарским биологом Иоганном Фридрихом Мишером. Мишер научился выделять это вещество и дал ему название “нуклеин”, а также показал, что нуклеин обладает кислотными свойствами (ДНК – это дезоксирибонуклеиновая кислота). Примерно в это время возникли первые предположения, что молекула ДНК может быть связана с передачей наследственной информации, но никаких убедительных доказательств этому еще не было. ДНК была лишь одной из множества молекул, которые удалось обнаружить в живых клетках.

В 1928 году английский генетик и врач Фредерик Гриффит провел знаменитые эксперименты, показавшие возможность передачи наследственной информации в пробирке

. Гриффит использовал две разновидности бактерий пневмококков. Первая – патогенные пневмококки, которые вызывают смертельную инфекцию у мышей. Вторая – безобидные пневмококки. Гриффит показал, что убитые нагреванием патогенные пневмококки не вызывают инфекции, но если смешать
Страница 16 из 23

мертвых патогенных пневмококков и живых непатогенных, то можно получить живых патогенных пневмококков. Очевидно, “патогенность” каким-то образом может передаваться от мертвых бактерий живым. Экстракт, содержащий мертвых патогенных пневмококков, сохранял какую-то сущность, некую молекулу, несущую наследуемый признак. Но ученых по-прежнему интересовал вопрос: что это за молекула?

К тому времени круг поиска сузился до трех типов молекул, которые в большом количестве присутствовали во всех живых организмах: ДНК, РНК и белки. В 1944 году американские биологи Освальд Эвери, Колин Маклеод и Маклин Маккарти провели простой и красивый эксперимент. В их распоряжении имелись ферменты, которые умели избирательно разрушать ДНК, РНК или белки. Были повторены опыты Гриффита с тем изменением, что экстракт мертвых патогенных пневмококков перед смешением с непатогенными живыми пневмококками обрабатывался одним из перечисленных типов ферментов. Оказалось, что, если обработать экстракт, полученный из мертвых патогенных пневмококков, ферментами, которые разрушат РНК или белки, передача наследственной информации все равно произойдет, и зараженная пневмококком мышка умрет. Но если разрушить ДНК, пневмококки остаются безобидными, мышка живет. Так было установлено, что “трансформирующим агентом” в эксперименте Гриффита являлась именно молекула ДНК

.

Уже эти опыты показали, что природа предусмотрела возможность обмена наследственной информацией между живыми организмами. Сегодня мы четко представляем, что бактерии могут активно усваивать фрагменты ДНК, которые остались от других существ

. Насколько процессы изменения ДНК распространены в природе и каково разнообразие различных мутационных процессов, включая обмен участками ДНК между разными организмами, мы рассмотрим в следующей главе.

Глава 6

Мой дедушка был вишней. Генетическое разнообразие жизни, механизмы мутагенеза, эволюция и селекция, принцип предосторожности

Экологические катастрофы, естественный отбор, селекция, антибиотики и устойчивость к ним, иммунная система позвоночных и бактерий, мобильные генетические элементы, мутации и горизонтальный перенос генов, генетическое разнообразие на нашей планете и даже инопланетная раса зергов – все это имеет некоторую взаимосвязь, которая обретает смысл в свете эволюции.

Американский экономист Нассим Талеб, выступая против ГМО, аргументировал принцип предосторожности с позиции математической статистики

. Талеб полагает, что распространение ГМО может привести к гибели всего человечества, да и вообще уничтожить существенную часть жизни на нашей планете в ходе экологической катастрофы, которая получила название экоцид. Аргумент Талеба заключается в том, что, даже если вероятность экоцида в результате внедрения отдельного ГМ сорта очень мала, последовательные многократные попытки создания ГМО могут этот риск значительно увеличить: рано или поздно мы создадим такой ГМО, который нас всех уничтожит.

Когда мы строим ядерный реактор, мы рискуем, ведь реактор теоретически может рвануть. Но не стоит рассматривать этот риск отдельно от опасностей, связанных с использованием альтернативных источников энергии. Почему бы не учесть негативные последствия от увеличения цен на электроэнергию или выбросов углекислого газа в атмосферу? Ведь отказ от ядерной энергетики в современных реалиях будет означать более интенсивное использование угля, нефти и газа. Когда человек осваивал огонь, он рисковал подпалить лес, в котором жил. Но где бы были мы сейчас, если бы наши предки отказались от использования огня? Учитывая все риски, рассмотрим ли мы опасность учета всех рисков? На эту тему есть отличная иллюстрация: металлический предупреждающий знак, на котором крупными буквами написано, что у знака острые края и поэтому его лучше не трогать.

В приведенном примере опасность для здоровья создается самим существованием предупреждающего о ней знака. Так и утверждения об опасности ГМО создают угрозу, что под давлением общественного мнения, которое формируют не столько ученые, сколько журналисты и политики, мы откажемся от важнейших технологий. Весьма вероятно, что дети, страдающие от нехватки витамина А, которых можно было бы спасти, погибнут, если золотой рис не получит одобрения. Есть риск, что люди, страдающие от диабета, умрут, если мы перестанем производить инсулин с помощью генетически модифицированных микроорганизмов. А ведь развитие сценария экоцида Талеба прежде всего касается быстро размножающихся и меняющихся одноклеточных!

Талеб упускает из виду биологическую сторону вопроса. Краеугольным камнем его аргументации является утверждение, что существуют принципиальные различия в рисках, связанных с использованием генной инженерии и селекции. Но кто сказал, что в природе не происходят те же самые процессы, которые используются при создании ГМО? И кто сказал, что продукты селекции или естественного отбора безопаснее продуктов генной инженерии?

Грандиозные экологические катастрофы случались в истории биосферы без участия человека. В результате появления фотосинтезирующих организмов несколько миллиардов лет назад произошли радикальные изменения в атмосфере Земли. Образовался кислород, страшный окислитель, к появлению которого многие формы жизни были не готовы. Но в итоге сформировались и вот уже миллиарды лет существуют организмы, использующие эффективный аэробный (кислородный) метаболизм вместо менее эффективного анаэробного. Содержание кислорода в воздухе с тех пор не оставалось постоянным. Сегодня кислород составляет 21 % атмосферы Земли, но за последние 550 миллионов лет его содержание менялось в пределах от 15 до 30 %

, и с этими колебаниями было связано появление и исчезновение гигантских насекомых, способных существовать только при высоких концентрациях кислорода.

Эксперименты в области генной инженерии производятся человеком в сравнительно небольшом объеме, в то время как природа порождает новых мутантов каждую секунду! Само существование жизни на нашей планете – один большой рискованный эксперимент, и генная инженерия к нему ничего принципиально нового не прибавляет. Давайте рассмотрим масштабы, в которых генетические изменения происходят в окружающей среде.

Самой многочисленной и разнообразной группой живых организмов на Земле являются прокариоты, к которым относятся бактерии и археи. Считается, что на нашей планете обитает около 10

прокариот. По некоторым оценкам, количество их видов может достигать миллиарда

, но даже по самым скромным подсчетам речь идет о десятках миллионов видов. Между тем есть основания полагать, что только в кишечнике одного человека живет более триллиона клеток, относящихся к более чем пятистам видам бактерий

.

Разнообразие эукариот тоже огромно. Существуют миллионы разных видов насекомых (и других членистоногих), 85 тысяч видов моллюсков, 64 тысячи описанных видов позвоночных, более 25 тысяч видов круглых червей, 20 тысяч видов плоских червей, 17 тысяч видов кольчатых червей – и это перечислены даже не все крупные группы животных. Число разных видов грибов оценивается в 1,5–5 миллионов, а число видов
Страница 17 из 23

наземных растений в 300–315 тысяч. Трудно представить, чтобы все это биоразнообразие спаслось от Великого потопа в одном Ноевом ковчеге, даже если исключить подводных обитателей. Конечно, все эти порой очень непохожие друг на друга организмы возникли не на пустом месте, а в результате многочисленных последовательных изменений ДНК предковых видов. Эти изменения в ДНК происходят и сейчас, у нас на глазах.

Все организмы являются генетически модифицированными относительно своих предков. Это утверждение справедливо и для человека. Как уже упоминалось, между мной, вами и любым другим представителем вида Homo sapiens, за исключением однояйцовых близнецов, найдется около трех миллионов генетических отличий. Именно столько отличий было обнаружено, когда в 2007 году прочитали один из первых полных геномов отдельного человека, ученого Крейга Вентера

, и сравнили хромосомы, которые он унаследовал от мамы и папы. Три миллиона – это только число точечных одиночных отличий лишь в один нуклеотид, не считая различных хромосомных перестроек, вставок и делеций участков ДНК. Учитывая, что на Земле живут миллиарды людей, будет сложно указать такой участок генома, который не претерпел бы изменений хотя бы у одного живого человека (если не считать участков, мутации в которых несовместимы с жизнью).

Упомянутые миллионы отличий появились не сразу, а накапливались на протяжении длительного времени. У человека в каждом поколении возникают десятки новых мутаций

. Ребенок не только получает некую уникальную комбинацию генетических вариантов от родителей, но еще около пятидесяти совершенно новых генетических вариантов, которых ни у кого из родителей не было.

Мутации в ДНК человека и представителей других видов неизбежны по целому ряду причин. Во-первых, фермент ДНК-полимераза, копирующий наследственную информацию, не умеет работать без ошибок: время от времени в растущую цепочку ДНК встраиваются неправильные нуклеотиды. Существуют разные ДНК-полимеразы, отличающиеся своей точностью, но даже самые надежные из них ошибаются хотя бы раз при копировании миллиона нуклеотидов

. Если бы не существовало никаких дополнительных механизмов устранения ошибок при синтезе ДНК, копирование столь крупного генома, как у человека, приводило бы к тысячам ошибок и возможность нашего существования была бы под вопросом.

К счастью, основные ДНК-полимеразы умеют отщеплять неправильно присоединенные нуклеотиды и исправлять собственные ошибки. Этот механизм тоже не абсолютно точный, но он снижает количество ошибок на порядок или, может быть, на два. Но сотни ошибок при каждом делении клеток – это все равно недопустимо много, особенно учитывая, как часто происходит деление. Для устранения нераспознанных ошибок существует система репарации – механизм, устраняющий неправильно спаренные нуклеотиды в двойной спирали молекулы ДНК.

Если в результате ошибки ДНК-полимеразы к растущей цепи молекулы ДНК был присоединен неправильный нуклеотид, возникает ситуация, когда стоящие друг напротив друга нуклеотиды в двойной спирали уже не являются комплементарными. Напротив А может стоять G, а не T, или напротив G – T, а не C. Это приводит к деформации молекулы ДНК. Специальные белки распознают подобные деформации и заменяют один из двух нуклеотидов таким образом, чтобы пара стала комплементарной (А напротив T, G напротив С). Разумеется, в этом процессе ферменты тоже могут ошибиться: оставить неправильный нуклеотид, а правильный заменить. В этом случае мутацию будет уже очень сложно устранить, ведь после такого исправления мы все равно получим комплементарную пару нуклеотидов. К счастью, система репарации умеет худо-бедно различать старую цепочку молекулы ДНК и вновь синтезированную и предпочитает сохранять старый вариант пары нуклеотидов. Но и этого недостаточно, чтобы полностью избежать мутаций.

Хорошая новость состоит в том, что для передачи по наследству мутация должна произойти не в любой клетке, а в клетке зародышевой линии, то есть либо в половой клетке, либо в клетке, которая впоследствии станет половой (после делений). При этом половые клетки проходят тщательный отбор. Миллионы сперматозоидов пытаются слиться с яйцеклеткой, но лишь один в итоге станет донором наследственного материала будущего плода. Естественно, серьезные нарушения в ДНК сперматозоида помешают ему победить в условиях столь жесткой конкуренции. Яйцеклетка достанется наиболее приспособленному (хотя не всякий генетический вариант, полезный сперматозоиду, полезен взрослому человеку!).

Яйцеклетки тоже проходят через “сито” естественного отбора. К 18–22 неделям развития женского плода в яичнике еще не рожденной девочки образуется несколько миллионов фолликулов, содержащих незрелые яйцеклетки. Их число впоследствии сокращается до нескольких сот тысяч к моменту половой зрелости, но только около четырехсот из них когда-либо получат шанс стать оплодотворенными.

Есть еще один барьер, препятствующий накоплению мутаций в клетках многоклеточных организмов, – апоптоз, или запрограммированная клеточная смерть. Если в клетке накапливаются повреждения ДНК, она может уничтожить саму себя, как доблестный самурай. Это очень важный механизм, так как чрезмерное накопление ошибок в генах может привести к тому, что клетка станет раковой, начнет неограниченно делиться, а ее потомки образуют зачаток опухоли. Клетки в такой опухоли начнут эволюционировать: новые мутации, способствующие более быстрому делению, будут закрепляться, и в итоге маленькая опухоль может перерасти в тяжелый случай агрессивного и метастазирующего рака.

Когда-то одна такая клетка из раковой опухоли шейки матки пациентки по имени Генриетта Лакс (Henrietta Lacks) положила начало клеточной линии, которая называется HeLa. Эти клетки живут в лабораториях и используются для исследований. Они очень быстро делятся и не стареют, поэтому их называют бессмертными. С момента своего появления клетки HeLa успели заметно измениться, и теперь их хромосомный набор заметно отличается от человеческого. В связи с этим американский биолог Ли Ван Вален даже предложил выделить эти клетки в отдельный вид одноклеточных организмов, произошедших из многоклеточного – человека.

Более очевидный пример такого видообразования – появление раковых клеток, вызывающих лицевую опухоль тасманийского дьявола. Эта опухоль передается от одной особи к другой через укусы

. Получается, раковая клетка настолько изменилась, что стала полноценным, независимым и опасным паразитом, перескакивающим с организма на организм. Аналогичный пример – трансмиссивная венерическая саркома собаки. Геном этих опухолевых клеток похож на геномы собачьих, но теперь это отдельный организм, размножающийся бесполым путем и передающийся от собаки к собаке через половой контакт

. Чем не замечательные, хоть и ужасные примеры появления новых видов в процессе эволюции?

Мутации в природе могут возникать по ряду внешних причин, напрямую не связанных с копированием молекулы ДНК. Так, ультрафиолетовое излучение (УФ) может повреждать ДНК. Такое повреждение чаще всего выражается в появлении тиминовых димеров – когда два соседних нуклеотида T
Страница 18 из 23

сшиваются вместе. Это тоже приводит к деформации молекулы ДНК, что привлекает компоненты системы репарации. Есть ферменты, которые умеют химически исправлять такие димеры, однако в ряде случаев клеткам приходится прибегать к более универсальным методам исправления ошибок – вырезать дефектные и близлежащие к ним нуклеотиды поврежденной цепочки ДНК. Благодаря наличию второй (комплементарной) цепи ДНК у клетки есть возможность восстановить двойную спираль, но успешно исправляются далеко не все повреждения.

Пигмент меланин, придающий темный цвет коже, помогает организму защититься от вредного воздействия УФ. Поэтому среди жителей экваториальных стран преобладает темная кожа, а защитной реакцией на избыток солнечного света является загар – усиленная выработка меланина. Это очень важный защитный механизм, ведь ошибки в ДНК, вызванные УФ, могут приводить к меланоме – злокачественной раковой опухоли кожи. Учитывайте последнее, решая, стоит ли много загорать во время поездки на море или проявить умеренность.

Другой существенный источник повреждения ДНК – ионизирующее излучение. Оно может возникать в результате радиоактивного распада некоторых элементов, а также достигать наших клеток из космоса. Некоторые химические вещества, называемые мутагенами, тоже могут способствовать накоплению ошибок в ДНК. Вещества с подобным эффектом существуют, например, в табачном дыме: у курящих существенно увеличен риск рака легких. Это не значит, что все любители затянуться заболеют раком легких, но шанс получить его в течение жизни у них примерно в 10 раз выше, чем у некурящих (примерно 17 % против 1 % у мужчин и 12 % против 1 % у женщин

). Любопытно, что далеко не все противники ГМО спешат запрещать курение, вред которого доказан, а некоторые даже курят. Возможно, их утешает тот факт, что табак натурален?

Следующий важный источник не столько новых мутаций, сколько генетического разнообразия – рекомбинация. Каждая хромосома присутствует у нас в двух вариантах: одна от папы, другая – от мамы. Две такие хромосомы называются гомологичными – они содержат похожие гены. Каждому из наших потомков мы передадим только одну из таких гомологичных хромосом. В процессе формирования яйцеклеток или сперматозоидов внутри клеток происходит обмен генетической информацией между некоторыми участками гомологичных хромосом – это и есть рекомбинация.

Понять, для чего это нужно, нам поможет вымышленная популяция людей Икс (это не отсылка к комиксам “Марвел”, а простое обозначение) с невымышленными генами. В этой популяции есть две категории людей. Некоторые люди кареглазые, другие – голубоглазые из-за мутации в гене Herc2, что ценится как признак красоты. Увы, в данной вымышленной популяции все голубоглазые страдают некоторым дефектом – у них также испорчен ген IVD, необходимый для утилизации аминокислоты лейцина. Эта мутация никак не влияет на цвет глаз, но негативно сказывается на здоровье и приводит к тому, что от человека пахнет потными ногами. Оба гена, Herc2 и IVD, расположены на 15-й хромосоме. Так как хромосомы наследуются целиком, в популяции людей Икс признак голубых глаз и признак “пахнуть потными ногами” наследуются вместе – это сцепленное наследование, поэтому все голубоглазые среди людей Икс плохо пахнут.

Неужели у людей Икс нет шанса зачать здорового голубоглазого ребенка, от которого не будет пахнуть потными ногами? Вот тут на помощь и приходит рекомбинация гомологичных хромосом. Одному мальчику досталась 15-я хромосома от голубоглазого папы и 15-я хромосома от кареглазой мамы. Сам он оказался кареглазым и здоровым, потому что голубоглазость и плохой запах – признаки рецессивные и проявляются только при наличии двух одинаковых копий генов Herc2 и IVD соответственно. Когда мальчик достиг половой зрелости, при образовании его сперматозоидов могла случиться рекомбинация, в ходе которой фрагмент 15-й хромосомы от отца с вариантом гена Herc2, нужным для голубых глаз, поменялся местами с фрагментом 15-й хромосомы от матери, содержащим обычный вариант этого гена. В итоге получилась новая комбинация аллелей на 15-й хромосоме – с нормальным геном IVD и голубоглазым вариантом гена Herc2.

Сперматозоиду остается найти яйцеклетку, которая будет нести голубоглазый вариант гена Herc2 и любой вариант гена IVD, и на свет появится уникальный для нашей популяции ребенок – с голубыми глазами и не пахнущий потными ногами. Вероятно, он немедленно прославится, станет пользоваться успехом у девушек, и эта новая замечательная комбинация генов быстро распространится в популяции. Для того чтобы никого не обидеть, я подчеркну, что в реальных популяциях упомянутая мутация в гене IVD встречается крайне редко и у меня нет оснований полагать, что она чаще встречается у голубоглазых (не стоит к ним принюхиваться).

Итак, спонтанные мутации и рекомбинации являются важными источниками генетического разнообразия. Без мутаций невозможна эволюция, а без рекомбинации и полового процесса она была бы более медленной. Но этим природа не ограничивается. Однажды я столкнулся с таким некорректным определением ГМО: “организмы, генетический материал которых изменен способом, недостижимым при естественных путях внутривидовых скрещиваний”. При таком определении любой человек тем более является генетически модифицированным. Почти 5 % генома человека – это последовательности эндогенных ретровирусов, которые когда-то очень давно встроились в геном наших предков

. Такое явление называется горизонтальным переносом генов, противопоставляется вертикальному переносу – от предков к потомкам – и является еще одним важным источником генетических изменений живых организмов. Например, ген, кодирующий белок синцитин, необходимый для формирования плаценты человека, достался млекопитающим от ретровирусов, которым он был нужен для создания белковой оболочки

.

Есть еще одна интересная категория генетических последовательностей – транспозоны, открытые лауреатом Нобелевской премии Барбарой Макклинток

. Транспозоны умеют перескакивать с одного участка ДНК на другой и в ряде случаев копировать самих себя, поэтому их еще называют мобильными элементами. Если транспозон встроится внутрь какого-нибудь гена, он может нарушить его функцию. Считается, что большинство транспозонов являются эгоистичными элементами, то есть мусором, не выполняющим никакой важной функции и занимающимся исключительно самосохранением и самораспространением. Однако, по-видимому, мобильные элементы сыграли важнейшую роль в эволюции позвоночных животных.

Согласно современным представлениям, из транспозонов, которые попали в геномы предков позвоночных более 600 миллионов лет назад

, появились RAG-белки, отвечающие за создание огромного числа различных генов антител и рецепторов иммунных клеток. Сегодня без RAG-белков немыслим адаптивный (обучающийся) иммунитет человека и других позвоночных, а их появление иногда даже называют “иммунологическим Большим взрывом”.

Мы уже обсуждали, что у человека всего около 20–25 тысяч генов. Но при этом наш организм способен производить более миллиона разных антител. Антитела – это особые белки, которые узнают разные антигены – части
Страница 19 из 23

вирусов, бактерий или других патогенов. Антитела достаточно специфичны, то есть одно антитело будет связывать конкретную часть определенной бактерии, но, скорее всего, не будет связывать ее другую часть или иную бактерию. Разнообразие антител нужно, чтобы находить и обезвреживать множество вариантов разных чужеродных агентов в нашем организме. Как, имея всего 25 тысяч генов, получить миллион разных антител? Для этого используется еще один тип рекомбинации – V(D)J-рекомбинация

, открытая японским ученым Сусуму Тонегавой. Можно сказать, что это форма генной инженерии, которая происходит внутри предшественников наших иммунных клеток, то есть внутри нас с вами.

В нашем геноме нет готовых генов, кодирующих антитела (иммуноглобулины). Вместо этого в нашей ДНК есть множество повторяющихся участков, которые называются V, D и J-сегменты. В ходе рекомбинации (в которой центральную роль и играет белок RAG1) один из множества V-сегментов, один из множества D-сегментов и один из множества J-сегментов сшиваются вместе с еще одним сегментом – C.

Представьте, что у вас есть 65 прилагательных, 27 существительных и 6 глаголов: вы можете составить из них 10530 разных предложений вида “плохой микроб застрелился”, “противная бактерия утопилась” или “злой вирус повесился”. Столько V(D)J комбинаций существует для тяжелой цепи иммуноглобулина человека. Похожим образом получается несколько сотен вариантов для легкой цепи, в которой есть V и J-сегменты, но отсутствует D-сегмент. Иммуноглобулины состоят из легких и тяжелых цепей, поэтому количество возможных комбинаций этих элементов нужно перемножить. Получается, что уже на этом этапе возможны миллионы вариантов иммуноглобулинов.

Генетическое разнообразие иммунных клеток – лимфоцитов – увеличивается благодаря еще одному механизму. Если лимфоцит столкнулся с антигеном, например с молекулой на поверхности бактерии, и распознал его, он начинает активно делиться. Одновременно запускаются клеточные процессы, приводящие к появлению новых мутаций в генах иммуноглобулинов

. Это способствует эволюции лимфоцитов: если мутации приводят к более прочной связи с антигеном, лимфоциты делятся активнее и их становится больше, если мутация приводит к тому, что антиген связывается хуже, – темпы деления замедляются. Размножаются самые удачливые, и в итоге иммунная система обогащается лимфоцитами, хорошо связывающими антиген.

Учитывая, что процесс создания иммуноглобулинов и рецепторов, распознающих чужеродные частицы, в значительной степени зависит от случайности, почему некоторые клетки иммунной системы не восстают против собственного организма? Дело в том, что предшественники иммунных клеток проходят через “бутылочное горлышко” естественного отбора. Перед тем как иммунные клетки “созревают”, происходит проверка их качества: если они распознают клетки самого человека как чужеродные, в них запускается программа самоуничтожения (апоптоз).

Кроме V(D)J-рекомбинации, есть еще один механизм естественной генной инженерии лимфоцитов. Этот механизм позволяет изменять свойства иммуноглобулина, сохраняя его специфичность. Например, на ранних этапах инфекции B-клетки человека (один из видов лимфоцитов) производят иммуноглобулины класса М. Это очень крупные антитела, состоящие из десяти одинаковых тяжелых и десяти легких цепей. На более поздних этапах инфекции такой лимфоцит может подвергнуться генетической модификации: часть гена тяжелой цепи иммуноглобулина вырезается, а полученный ген теперь кодирует другой иммуноглобулин G. Иммуноглобулин G сохраняет прежнюю комбинацию V(D)J-сегментов (и специфичность узнавания антигена), но уже состоит из двух тяжелых и двух легких цепей. Подобное переключение класса антител путем направленных изменений генов внутри лимфоцитов позволяет еще больше расширить функциональность иммунной системы.

Этим примеры природной генной инженерии не исчерпываются. Я уже упоминал опыты Гриффита, в которых было показано, что мертвые патогенные пневмококки могут передавать свою наследственную информацию живым непатогенным пневмококкам. Оказывается, что бактерии вообще охотно захватывают кусочки чужой наследственной информации. В этом смысле они подобны инопланетной расе зергов из компьютерной игры Star Craft. Эти инопланетяне уничтожали другие формы жизни, но брали у них полезные гены и встраивали в свой геном, приобретая новые свойства и способности. Бактерии обмениваются кольцевыми молекулами ДНК – плазмидами, также они обмениваются генами через бактериофаги. Кроме того, у бактерий есть секс, который называют конъюгацией. Бактерии соединяются друг с другом с помощью особых отростков, пилей, и передают по ним наследственную информацию (чаще всего упомянутые плазмиды или транспозоны).

Склонность бактерий хватать чужие гены имеет серьезные последствия. Мы уже обсуждали пример, когда произошел обмен генами между двумя штаммами кишечной палочки и получился новый и весьма опасный для человека штамм, который убил несколько десятков людей в Германии. Другая проблема связана с тем, что некоторые болезнетворные бактерии могут позаимствовать гены устойчивости к антибиотикам у своих безобидных “коллег”, встречающихся повсеместно в природе.

Антибиотики, такие как классический пенициллин, выделенный из грибов, – эффективные антибактериальные средства, но чем больше мы их используем, тем хуже они работают. Используя антибиотики слишком часто, мы создаем условия, в которых бактерии начинают эволюционировать, вырабатывая устойчивость к этим препаратам. Мы убиваем бактерий антибиотиком, но бактерий очень много, а благодаря мутациям они еще и разнообразны. Некоторые бактерии с полезными мутациями, обеспечивающими устойчивость к антибиотикам, выживают. Горизонтальный перенос генов позволяет выжившим бактериям передавать устойчивость не только своим прямым потомкам, но и другим бактериям, в том числе и более опасным.

Сегодня в развитых странах пытаются снижать частоту применения антибиотиков. Становится ясно, что не стоит злоупотреблять антибиотиками в сельском хозяйстве, а новые антибиотики нужно использовать только при крайней необходимости, чтобы чрезмерно не стимулировать эволюцию бактерий. Не стоит употреблять антибиотики без назначения врача, а курс лечения следует проходить до конца, поскольку от малой дозы антибиотиков погибнут только наименее приспособленные бактерии, а потомки выживших могут стать еще лучше приспособленными и опасными. Еще один способ предотвращения такой нежелательной эволюции бактерий – использование сразу нескольких разных антибиотиков. К подобным “коктейлям” сложнее приспособиться.

Хорошая новость заключается в том, что если перестать использовать антибиотики, которые потеряли эффективность, то со временем бактерии утратят к ним устойчивость. Последовательно осуществляя ротацию антибиотиков при достаточном их разнообразии, мы можем обогнать эволюцию бактерий и защитить себя от инфекций. Но делать это желательно во всем мире. Тот же самый подход можно использовать и в случаях, когда у насекомых-вредителей возникает устойчивость к какому-то инсектициду или когда
Страница 20 из 23

у сорняка возникает устойчивость к гербициду.

Но бактерии-зерги не ограничиваются лишь обменом устойчивостью к антибиотикам. Некоторые бактерии встраивают в свой геном последовательности вирусов, чтобы научиться защищаться от них, – это лежит в основе недавно открытого механизма бактериального иммунитета, так называемой CRISPR-системы

, о которой мы поговорим подробнее при обсуждении методов генной инженерии в тринадцатой главе. В общих чертах: вирус бактериофаг впрыскивает свою ДНК в бактерию в надежде, что бактерия ее размножит, но хитрая бактерия вместо этого вырезает кусочек вирусной ДНК и встраивает его в свой геном, в специальное место, которое называется CRISPR-кассетой. После этого бактерия синтезирует небольшие РНК-фрагменты, комплементарные вирусной ДНК, а специальный белок использует их, чтобы при следующем визите вируса распознать его. Всякая молекула ДНК, комплементарная РНК-фрагменту, подлежит уничтожению. По сути, бактерия создает базу данных “отпечатков пальцев” преступников, чтобы потом было легче их ловить.

Некоторые бактерии умеют генетически модифицировать не только себя, но и другие организмы. Агробактерия Agrobacterium tumefaciens живет повсеместно в почве. У нее есть специальная Тi-плазмида, а внутри плазмиды содержится особый участок, Т-ДНК, который агробактерия умеет встраивать в геномы растений. Речь идет не о передаче растению всей плазмиды целиком, а только о передаче короткого фрагмента. Бактерия прикрепляется к растительной клетке, и между ними образуется специальный канал, в формировании которого участвуют бактериальные белки. По этому каналу копия Т-ДНК в сопровождении ряда других белков переносится в цитоплазму растительной клетки. Бактериальные белки помогают Т-ДНК попасть в ядро, где она встраивается в геном растения, в какую-нибудь хромосому.

В дальнейшем эта вставка уже ничем не отличается от обычной наследственной информации растений. Когда ДНК растения удваивается, вставка удваивается вместе с ней. Когда клетка растения делится, вставка попадает в обе дочерние клетки. В ядре растительной клетки с генов, записанных на Т-ДНК, считывается РНК. В цитоплазме эта РНК служит матрицей для синтеза бактериальных белков, стимулирующих растительную клетку к активному делению и выработке питательных веществ, которыми питается бактерия. Почему-то эта форма генной инженерии никого не беспокоит с точки зрения возможных последствий, хотя бактерии занимаются ею исключительно в своих корыстных целях. Неужели даже после многочисленных эпидемий (чума, холера и так далее) человечество продолжает доверять бактериям больше, чем ученым?

В 2015 году интернациональная группа исследователей из Бельгии, США, Перу и Китая опубликовала в научном журнале PNAS результаты генетического анализа 304 образцов батата (сладкого картофеля)

. В анализ включили 291 образец культивируемого батата из регионов Южной и Центральной Америки, Африки, Азии и Океании, 9 образцов дикого сладкого картофеля и 4 образца родственных растений. Ученые обнаружили во всех исследованных образцах культивируемого батата не менее одной трансгенной бактериальной вставки, отсутствующей у диких родственников растений. В некоторых сортах батата они обнаружили даже несколько подобных вставок! По крайней мере одна трансгенная вставка появилась у общего предка культивируемых сортов сладкого картофеля предположительно несколько тысяч лет назад, причем перенесенные гены не были генетическим мусором – они были активны! Выходит, что все это время люди ели трансгенные растения с генами бактерий и даже не подозревали об этом!

Ранее трансгенные вставки бактериальных генов были обнаружены в геноме льнянки

. Но примеры горизонтального переноса генов не ограничиваются растениями. Например, в геноме жука Callosobruchus chinensis присутствует 30 % генов бактерии вольбахии

, то есть в этом случае речь идет о переносе не одного или нескольких генов, а сотен! Существуют функциональные гены, перенесенные в геномы различных животных, в том числе и в геном человека

. Эти и многие другие примеры говорят о том, что современным генным инженерам еще очень далеко до самой природы в их попытках изменить наследственную информацию живых организмов. Природа работает в куда больших масштабах.

Весь процесс эволюции жизни на нашей планете от одноклеточных организмов до динозавров и далее до человека и других современных видов, длившийся несколько миллиардов лет, является процессом изменения генов. Вся история селекции, осознанного или неосознанного отбора людьми наиболее вкусных и хорошо растущих растений, – это история изменения генов культурных сортов. Генная инженерия отличается от селекции только тем, что это более точный и быстрый процесс с меньшим количеством нежелательных побочных эффектов. Но чтобы разрушить последние сомнения, давайте рассмотрим более старые биотехнологии, которые использовались и используются в селекции, но, в отличие от генной инженерии, тревоги ни у кого не вызывают.

Среди множества методов селекции используется создание полиплоидных организмов. Полиплоидные организмы – это организмы, у которых количество хромосом больше обычного. Например, не две копии каждой хромосомы, а четыре или восемь. У многих животных такая полиплоидия приводит к нарушению жизнеспособности, зато у растений это позволяет – в ряде случаев – получать более урожайные сорта. Для того чтобы получить полиплоидные растения, часто используют вещество колхицин – страшный и, кстати, совершенно натуральный яд, разрушающий структуры из микротрубочек, которые в норме связывают хромосомы и растаскивают их по разным полюсам делящейся клетки. После обработки колхицином клетка сможет удвоить свою ДНК, но не сможет разнести хромосомы к разным полюсам, поэтому не поделится и останется с удвоенным количеством хромосом. Таким образом, она будет увеличивать количество своей ДНК несколько раз, прежде чем ей позволят поделиться.

Для того чтобы ускорить появление новых признаков, селекционеры также прибегают к различным методам, стимулирующим появление мутаций. Для этого порой используют радиационный или химический мутагенез. Естественно, в результате этих слабо контролируемых процессов получается масса непригодных мутантов, но иногда появляются растения с улучшенными качествами, и именно их отбирают и культивируют. При этом селекционеры не задаются вопросом, что именно изменилось в ДНК селекционного сорта, что позволило ему стать питательнее или крупнее, из-за чего у него уменьшились или пропали косточки. Априори любые изменения в наследственной информации признаются безопасными, хотя это необязательно так.

Сравнить генную инженерию и селекцию нам поможет аналогия: вы пытаетесь купить утюг в интернет-магазине. Допустим, вы знаете, какой именно товар вам нужен, поэтому можете просто взять и купить его – это генная инженерия. А можете сидеть и до посинения покупать случайные товары. Иногда вам привезут пылесос, иногда соковыжималку, иногда новый унитаз. Это случайные мутации. Унитаз – это, может, и неплохо, но унитазом рубашку не погладить. С сотой или с тысячной попытки, возможно, вам все-таки повезет, и привезут
Страница 21 из 23

что-то отдаленно похожее на утюг. Например, сковородку. Тогда вы радостно позвоните в магазин и попросите впредь присылать предметы, похожие на предыдущий заказ. Вам, конечно, уже не будут присылать унитазы, а будут слать другие сковородки, кастрюли и, если повезет, утюги.

Конечно, первый утюг будет не той марки, но и это уже прогресс! Вы снова позвоните в магазин, поблагодарите их и попросите присылать предметы похожей формы. Теперь вам будут слать только утюги. Ну и в конце концов вы все-таки получите именно тот утюг, который хотели, и, возможно, вам даже не придется перебирать весь ассортимент магазина. Сейчас мы описали селекцию. Результат будет один и тот же, но сразу заказать утюг, согласитесь, проще. Ну и во втором случае у вас еще останется куча ненужного хлама, унитазов, тостеров, штучек для закручивания усов и грабли, на которые вы однажды наступите и сломаете себе нос.

В 2008 году в журнале Nature Genetics вышла статья, авторы которой показали, что в процессе одомашнивания кукурузы происходили не только положительные изменения ее генома. В частности, никто не заметил, как в ней сломался ген белка-фермента, отвечающего за осуществление последнего этапа биосинтеза растительных масел

(вот они – те самые грабли, которые мы случайно получили вместе с утюгом). А теперь внимание! Если с помощью генной инженерии исправить этот дефект и восстановить “природный” вариант гена, то суммарное содержание растительных масел в кукурузе увеличится на 41 %, а содержание олеиновой кислоты, относящейся к группе омега-9 ненасыщенных жирных кислот, – аж на 107 %!

Без изменений ДНК невозможна селекция, а характер изменений ДНК при селекции может иметь куда более драматичные последствия, чем при генной инженерии. В случае с генной инженерией мы обычно встраиваем один ген, кодирующий один белок, и основной результат заключается в том, что растение начинает синтезировать этот самый белок. Побочным эффектом может быть некоторое изменение содержания других белков, ведь на синтез нового белка уходит какое-то количество энергии и строительных материалов в виде аминокислот.

При селекции мы можем получить организм с совершенно непредсказуемыми изменениями в геноме. Может быть, новые свойства сорта связаны со встраиванием в его ДНК генов природной агробактерии (как в примере с бататом) или фрагмента вируса. Вполне возможно, что у него поломался ген или даже десяток генов. Не исключено, что какой-то ген удвоился. Как вариант из одного участка генома в другой мог перескочить мобильный элемент. Кроме того, в нем могло измениться число хромосом. Мог измениться какой-то важный ген. Случиться могло и все перечисленное, вместе взятое. Если мы не боимся этих генетических изменений (а практика показывает, что никто не требует проверки на безопасность и исследований на пяти поколениях крыс для всех селекционных сортов), то улучшенных методами генной инженерии организмов и подавно не стоит бояться.

Но Нассим Талеб все-таки приводит один разумный аргумент. Представьте, что у вас есть 500 разных сортов кукурузы. И вот появился вирус, который уничтожил кукурузу одного сорта. Поля с этой кукурузой не принесут урожая, но остальные поля урожай дадут, и голод человечеству не грозит, а на неудачном поле в следующий раз посеют один из 499 не подверженных вирусу сортов. Теперь представьте, что вся кукуруза генетически однообразна, что есть только один наилучший сорт, который используют все без исключения. Только в таком случае вероятен сценарий катастрофы, описанной в завязке фильма “Интерстеллар”: вирус распространяется по всем полям, уничтожает все посевы, и миллионы людей погибают от голода. Хотя нет, в фильме все-таки был абсурдный вирус, который уничтожал не только разные сорта кукурузы, но и вообще любую растительность, однако идея, надеюсь, понятна.

Это проблема монокультур. Если у вас есть большое генетическое разнообразие, вы получаете более устойчивую систему, которая может пережить любые катаклизмы, ведь какие-то мутации помогут преодолеть самые неблагоприятные условия: некоторые организмы переживут даже ядерную войну. Талеб говорит, что генная инженерия обедняет генетическое разнообразие, приближая нас к экологической катастрофе. Но Талеб ошибается в том, что проблема монокультур и распространения инфекций и вредителей – это проблема генной инженерии.

Великий голод в Ирландии в 1845–1849 годы был спровоцирован массовым заражением картофельных посевов патогенным грибом Phytophthora infestans. Генной инженерии тогда не было. В конце XIX века во Франции виноделие было практически уничтожено из-за нашествия насекомых-вредителей – филлоксеры. Генной инженерии все еще не было!

Монокультуру можно сделать и из обычных селекционных сортов. Вы и так не видите в супермаркете трехсот сортов яблок. Вы найдете от силы десять. Генная инженерия в этом не виновата – первый сорт генетически модифицированных яблок, а именно не темнеющих на воздухе, был одобрен только в 2015 году, причем только в США.

Генная инженерия представляет угрозу биоразнообразию культурных сортов, только если это инструмент в руках монополиста. Но генная инженерия стала бы, наоборот, мощнейшим источником генетического разнообразия

, если бы коммерческое внедрение этой технологии было доступно всем, а не только транснациональным корпорациям, которые могут себе позволить пройти через всю волокиту процедур по проверке и одобрению новых сортов.

Если бы каждый мог сделать свой сорт яблока, такой, какой нравится ему, с теми желаемыми свойствами и вкусовыми качествами, мы бы имели исключительно рост биоразнообразия. Посмотрите, какой возник бум в области компьютерных игр и приложений, когда оказалось, что каждый может создать уникальное творческое решение и заработать на нем, если оно окажется удачным. Разнообразие порождает конкуренцию, а конкуренция дает свои плоды в виде отличных решений. Причем технически создание домашней лаборатории по генной инженерии – это уже давно не проблема.

Из миллиона идей большинство окажутся плохими и не приживутся, но некоторые окажутся замечательными, и именно они распространятся. Генная модификация – это идея. Нужна добросовестная конкуренция между разными производителями ГМО, чтобы получились более высококачественные и вкусные продукты. Чтобы могли появиться фермер Стив Джобс и генный инженер Стив Возняк, которые подарят миру такое трансгенное яблоко, что его захочет надкусить каждый. И нужно разумное антимонопольное законодательство, которое сделает так, чтобы это яблоко не стало единственным на рынке.

Для сохранения биоразнообразия принимаются и дру- гие меры. Есть крупные банки семян, позволяющие за несколько лет восстановить практически любой существовавший ранее сорт растений, если возникнет необходимость. Для защиты дикой природы существуют Красная книга и законы, оберегающие естественную среду обитания растений и животных. Мы рискуем потерять эти территории, если в ответ на рост численности населения будем увеличивать площади, отведенные под неэффективное натуральное земледелие, вместо того чтобы увеличить урожайность уже существующих полей с помощью всех доступных нам методов, включая генную
Страница 22 из 23

инженерию.

Современные законы, ограничивающие создание коммерческих генетически модифицированных сортов, вредят биоразнообразию и защищают существующие монополии в области производства генетически улучшенных сортов растений и пород животных. Разумеется, изменить привычные устои не получится, пока люди боятся употреблять продукты, созданные методами генной инженерии. Нагнетают эти страхи и авторы спорных исследований о потенциальном или явном вреде ГМО. Настало время поговорить о них.

Глава 7

Так говорил Сералини. Математическая статистика в биологии, ошибки в исследованиях о вреде ГМО

“Статистика не всегда говорит правду, но может помочь понять результаты” – так ответил

французский исследователь Жиль-Эрик Сералини на один из ключевых пунктов критики, которая обрушилась на его статью о вреде генетически модифицированной кукурузы линии NK603

. Пятнадцать

писем от независимых исследователей, в том числе от меня, указывали на различные ошибки в этой нашумевшей публикации в научном журнале Food and Chemical Toxicology.

“В этих результатах нет ничего, кроме случайной ошибки, и любой компетентный рецензент немедленно это увидел бы”, – писал один из критиков Сералини профессор Энтони Тревавас, молекулярный биолог из Эдинбургского университета. Поддержка у Сералини со стороны коллег тоже имелась, но ее выразили лишь в одном письме

. Тем временем Россия отреагировала на исследование введением временного запрета на импорт генетически модифицированной (ГМ) кукурузы.

Сералини утверждал, что крысы, употреблявшие ГМ кукурузу NK603, погибали чаще и имели больше опухолей, чем крысы из контрольной группы, которые ели обычную кукурузу. Большинство специалистов, глядя на опубликованные результаты, возражали, что этот вывод не обоснован. В такой ситуации обычному человеку сложно понять, кому доверять: Сералини или тем, кто его критикует. Для этого желательно узнать, в чем, собственно, заключалась критика.

В этой главе представлен обзор аргументов в пользу безопасности использования уже существующих генетически улучшенных организмов в качестве продуктов питания. Это необычный обзор, потому что я опираюсь исключительно на данные, полученные теми, кто писал о возможной опасности ГМО, в том числе и на данные, полученные Сералини.

В значительной части работ, в которых было заявлено негативное действие ГМО на животных, выводы не соответствуют результатам. Это связано с тем, что в них присутствует одна и та же ошибка, которая заключается в некорректном применении аппарата математической статистики. После ее устранения полученные данные перестают свидетельствовать в пользу того, что ГМО опаснее обычных организмов. Следуя завету Сералини, давайте разберемся в том, как статистика помогает понять результаты исследований. Но сначала попробуем понять саму статистику.

В статистике существует понятие, которое называется нулевая гипотеза. Это понятие отражает позицию по умолчанию, утверждающую, что между двумя явлениями нет никакой связи. Она говорит, что орел или решка на монете выпадают равновероятно и независимо от погоды. Что рак легких не связан с курением. Что цвет глаз человека не зависит от его пола. Что число пропавших в течение недели носков не зависит от того, наблюдалось ли на небе НЛО. Что токсичность картошки не зависит от того, генетически модифицирована она или нет, и так далее. В некоторых случаях нулевая гипотеза верна, в других – нет. До появления доказательств обратного нулевая гипотеза считается верной по умолчанию, поэтому научные эксперименты сводятся к тому, что нулевую гипотезу пытаются опровергнуть.

Статистические тесты позволяют оценить, насколько высока вероятность получить некий результат при условии, что нулевая гипотеза верна. Допустим, что мы провели эксперимент, в котором подкинули монетку десять раз и все десять раз выпала решка. В данном случае за нулевую гипотезу можно принять равную вероятность выпадения орла и решки. При таком допущении вероятность выкинуть решку десять раз из десяти равна ? в десятой степени, то есть менее одной тысячной. Полученная вероятность называется P-значение, или просто P, и это вероятность получить такое же или более существенное отклонение результата эксперимента от ожидаемого. Полученное P сравнивается с пороговым значением, уровнем значимости, обозначаемым ? (альфа). Общепринятыми значениями ? являются либо 0,05, либо 0,01, либо 0,001. Отметим, что 0,05 – самый мягкий порог, который можно встретить в научной литературе, хотя это лишь некоторая условность.

Если полученное значение P меньше, чем пороговое значение, мы считаем, что нулевая гипотеза отвергнута и можно принять альтернативную гипотезу. В случае с монеткой получилось так, что P < 0,001, а значит, есть основания полагать, что решка выпадает чаще орла. Чем меньше порог ?, тем меньше вероятность, что мы получим ложноположительный результат, найдем закономерность там, где ее нет. Чем больше порог ?, тем меньше вероятность, что мы получим ложноотрицательный результат, то есть не найдем закономерности там, где она есть. Правильно подобранные пороги позволяют соблюсти баланс между этими двумя типами ошибок.

Статистику полезно знать еще и потому, что она помогает знакомиться с девушками (или молодыми людьми), и я сейчас продемонстрирую как. Загадайте целое число от 1 до 20. Сделайте это, прежде чем читать дальше. Помните, что если вы симпатичная девушка и я угадаю ваше число, то с вас билет в кино. Итак, перед вами умная книга, наподобие дневника Тома Редла из “Гарри Поттера”, и она заранее знает, какое число вы загадаете. Обратитесь к калькулятору и поделите 23101096 на 1358888. Убедитесь, что я угадал правильно.

Секрет фокуса прост. Он работает только в одном случае из двадцати, и, скорее всего, я ваше число не угадал. Девятнадцать читателей из двадцати не будут впечатлены, но, возможно, именно с вами мне повезло, и вы на секунду удивились. Если повторять этот фокус много раз, каждый раз с новой девушкой (или читателем), с кем-нибудь он неизбежно сработает. Вероятность угадать в одном испытании равна 5 %, но вероятность угадать хотя бы раз, имея двадцать попыток, уже превышает 64 %. При ста испытаниях трюк удастся хотя бы раз с вероятностью 99,4 %!

Проблема “множественных сравнений” (или множественных испытаний) возникает в статистике, когда мы проверяем не одну гипотезу, а множество похожих. Для ее иллюстрации используется простая формула Y = (1,00–0,95

)?100 %, где N обозначает число сравнений, а Y – вероятность того, что по случайным причинам хотя бы в одном из них будет обнаружено статистически достоверное отличие при пороге значимости 0,05.

В 2012 году доктор Крейг Беннет получил Шнобелевскую премию за удивительную статью. Он искал у лосося участок мозга, отвечающий за распознавание человеческих эмоций. Для этого он показывал рыбе серию фотографий, на которых были изображены люди в разных социальных ситуациях, с разным эмоциональным оттенком, и анализировал активность мозга рыбы с помощью томографа. Оказалось, что мозг рыбы по-разному реагирует на разные фотографии людей! Этот результат особенно удивителен, если учесть, что лосось в исследовании был дохлым

.

На самом деле
Страница 23 из 23

Беннет пытался привлечь внимание к важной проблеме. Стандартные приборы, измеряющие активность мозга, имеют погрешности в измерениях, шум. Если измерить активность мозга одновременно в огромном количестве независимых участков, в некоторых из них по случайным причинам может обнаружиться статистически достоверный сигнал, который можно ошибочно интерпретировать как признак мозговой активности (реакцию на изображения). Так Беннет продемонстрировал, что проблема множественных сравнений порой приводит к неожиданным биологическим результатам.

Самый простой способ учесть множественные сравнения – ввести поправку, названную в честь итальянского математика Карло Эмилио Бонферрони

. Поправка гласит, что если экспериментатор проверяет не одну, а сразу n гипотез, ему следует проверять каждую гипотезу не против уровня значимости ?, а против уровня значимости ?/n. Есть и другие способы учесть множественные сравнения, но этот проще объяснить, а выводы, которые будут сделаны в этой главе, справедливы и при использовании других распространенных поправок.

Предположим, что пять девушек независимо загадали натуральное число от одного до сорока. И я, назвавшись экстрасенсом, угадал число одной из них. Можно ли отвергнуть нулевую гипотезу, что я не умею читать мысли, используя самый мягкий порог статистической значимости, ? = 0,05? Без поправки Бонферрони мы получаем, что в случае с одной из девушек случилось событие, вероятность которого 1/40, – я угадал ее число. Эта вероятность меньше, чем ? = 0,05, а значит, есть основания полагать, что я умею читать мысли. Но свои экстрасенсорные способности я опробовал на пяти девушках. Следовательно, мы имеем дело с пятью множественными сравнениями. Поэтому порог ? = 0,05 мы делим на пять и получаем новый порог ? = 0,01, что уже меньше, чем 1/40. Теперь мы приходим к выводу, что даже при самом мягком пороге статистической значимости нельзя исключить гипотезу, что мне просто повезло.

Поправка Бонферрони достаточно консервативна, то есть значительно снижает риск обнаружения ложноположительных результатов, но одновременно увеличивает количество ложноотрицательных. Мы рискуем пропустить какую-то важную закономерность, поэтому использовать ее нужно осторожно. Однако в примерах работ, которые я буду разбирать ниже, эта поправка оправдана по нескольким причинам

.

Во-первых, из современных представлений в области молекулярной генетики не следует никаких рисков, связанных с употреблением ГМО. Поэтому непонятно, как именно ГМО должны влиять на организм животных и каким может быть биологический механизм такого воздействия. Нет никаких четких гипотез о том, какие биологические показатели должны измениться, как сильно и в какую сторону. Скептически настроенные к ГМО исследователи проверяют все подряд, и любые отличия между ГМО и их аналогами признают потенциально опасными. Увеличение толщины кишечника опасно, но уменьшение тоже вредно! Настораживает как снижение, так и увеличение содержания каких-нибудь микроэлементов в ГМО или бактерий в кишечнике организмов на диете с ГМО. Если рассмотреть множество параметров, отличия по некоторым из них обязательно найдутся.

Второй аргумент в пользу поправки заключается в том, что обнаружение любых отклонений у организмов, питающихся ГМ кормом, моментально становится сенсацией, даже если это предварительный и никем еще не воспроизведенный результат. Эти сенсации приводят к серьезным политическим решениям и экономическим последствиям, введению ограничений импорта и даже к попыткам изменения законодательства. Поэтому ложноположительные результаты крайне нежелательны как для развития биотехнологий, так и для формирования объективной научной картины мира.

Рассмотрим еще две истории про ошибки научного метода, показывающие, как маленькие недостатки эксперимента могут приводить к “потрясающим” результатам и насколько важно критически относиться к научным сенсациям. Среди биологов передается из уст в уста анекдотическая история о том, как в одном НИИ открыли телепатию. Исследователи брали крыс и сажали их парами в клетки, давая им возможность познакомиться. Через некоторое время клетки с парами крыс разделяли на две группы: экспериментальную и контрольную (для сравнения). Крыс из каждой пары изолировали друг от друга, чтобы они не могли видеть друг друга, обмениваться звуками и запахами. В экспериментальной группе одну крысу из пары заставляли голодать, а за второй крысой наблюдали, оценивая, сколько она ест в условиях неограниченного доступа к еде. В контрольной группе обеим крысам предоставляли неограниченный доступ к еде, за одной из крыс наблюдали. Оказалось, что напарница голодающей крысы ела больше, чем напарница сытой крысы, как будто чувство голода передавалось между крысами через неизвестный нам канал информации.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (http://www.litres.ru/aleksandr-panchin/summa-biotehnologii-rukovodstvo-po-borbe-s-mifami-o-geneticheskoy-modifikacii-rasteniy-zhivotnyh-i-ludey/?lfrom=931425718) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Здесь представлен ознакомительный фрагмент книги.

Для бесплатного чтения открыта только часть текста (ограничение правообладателя). Если книга вам понравилась, полный текст можно получить на сайте нашего партнера.

Adblock
detector